KSNT

Since 1979

KGS-1020M
 Manual Surface Grinder
 Operation Manual

www.kentusa.com
1.800.KENT.USA

CONTENTS

A). Transit And Unpacking 1
Packing Diagram 1
B). Choice Of Site 2
C). Installation
(1). Power Consupmtion 3
(2). Foundation 3
(3). Contour And Nomenclature 4
(4). Cleaning Up The Machine 5
(5). Mounting The Tablc 5
(6). Levelling The Machine. 6
(7). Table Size And Grinding Capacity 1
(8). Lubrication Instruction 8
(9). Circuit Diagram \& Conncetion Diagram. 9
The Electric Wiring Diagram of K(iS1020 10
(10).Balancing The Grinding Whecl 11
D). Specifications 14
E). Putting The Maching Into Operation
(1). Wiring Of Power Source 14
(2). Control Panel \& Description 15
(3). Operation
a. Before Operation 16
b. Operation 16
F). General Comments Of Grinding 17
G). Wheel Inspection. 17
H). Dressing The Whecl And Correct Treatment Of Dressing Diamond 18
I). Storage Of Grinding Wheel 20
J). Selection Of Suitable Grinding Wheels 20
K). Wheel Be Recommended 22
L). Choice Of The Grinding Condition 22
M). Use Of The Optional Attachment
(a). Parallel Dressing Altachment 24
(b). Angle Forming Attachment. 24
(c). Sine Bar. 26
(d). Radius Forming Attachment 26
(e). Coolant System 29
(f). Common Cases In Side Grinding 30
(g). Right Angle Grinding 31
N). Complete Knock Down Drawing \& Parts Lists 32
O). Electrical Parts List 48
P). Trouble Shooting 49

THIS MACHINE HAS BEEN FULLY TESTED, ADJUSTED $\wedge N I$) INSPECTED FOR CORRECT ALIGNMENT AND OPERATION PRIOR TO SHIPMENT, IN TRANSIT OR INSTALLATION, PILEASE ENSURE THAT THE MACHINE IS NOT BUMPED WHEN BEING ROLLED OR SET DOWN TO AVOID ANY FAILURE.

A). TRANSIT AND UNPACKING

1. Machine weight: | Net | 1730 Kg |
| :--- | :--- |
| | Gross |
| | 1480 Kg |
2. To avoid damaging the machine or paint, please pay more attention when transit and unpacking.
3. Loosen the fixing screws before lifting machine, then remove the skid-hord.
4. Packing Diagram

5. Machine
6. Standard Accessorics
7. Coolant Tank
8. Table and Splash Guard
9. Blancing Base

B). CHOICE OF SITE

The output of the machine and the degrec of accuracy of the components produced depend to a very special on the correct choicc of site for the crection of the machine.

The grinding machine should be handled just as carefully as a jigborer. Afler all extreme precision is demanded of both types of machine.

Grinding machine are often found between milling, shaping, drilling and even slotting machine, without any thought of the consequences of such planning. In eluch cases, it is impossible to achicve good surface finishes, as the vibrations from the mallin! machine or jerks from the reversal of the shaper stroke, etc. are transmitted to the grinding machine. Chatter marks can be found on the ground surface, which are dwe to these extrancous influences.

- Unsolid floor is unsuitable for taking the machinc as it results in distorlion of the machine bed.

Floor plan:

. 2 .

C). INSTALLATION

(1). Power Consumption

Machine	2 2kw
Coolant	1.) ())
Ele Mag Chuck	0003 kw
Total	2353ト心

(2). Foundation
a. Dimension

b. Use the levelling pads and screws

* Screw the levelling scretvs (1105, nut M20) on the machine base as figure shown. For easy levelling and more steady of the machine make levelling screw as deep as possible.
* Lay down the machine slowly to let serews fall into the center hole of Levelling pads (1017).
* Levelling the machine.

(3) Contour and Nomenclature

. 4 .
(4). Cleaning $U p$ the Machine

This machine has been pracked with anti-dust greasc before shipping out, so for better operation and lubrication effect, please clean up the following two point before moving the three-axis travel:

1. Elevation slide way.
2. Saddle "V" groove.
(5). Mounting The Table

The machine is despatched completed with the exception of table. so as 10 protect the harden and ground slideways from demage during shipment. When installed, mounting the table as following procedures:
a. Wind the wire rope on the "Drum" 3 cycles as figure shown. tightening the wire and fix it temporarily.

b. Put the steel ball retainers right in the middle of slideways.
c. Lift up the table and place it on the steel ball retaincrs. To prevent slideways from damaging, please handle with care.
d. Fix the wire rope on the fixed stand.
e. The wire will loose after long use, and will cause table move unsmoothly. in this case please adjust the adjusting bolt the right end till it's in tightening condition.
f. The quantity of steel ball

The front retainer has 22 steel balls.
The back retainer has 23 steel balls.
This machine has 45 steel balls all.
(6). Levelling the machine

As following procedures:
a). Use longitudinal handwheel to let table at left end position. l.cvelling the machine by a Spirit Level in longitudinal and latitudinal direction.(Fig. Λ)
b). U.se longitudinal handwheel to let table at right end position. Levelling the machine in longitudinal and latitudinal direction.(Fig. B)
c). Use crossfeed handwheel to let table at front end position. I.cvelling the machine by a Spirit Level in longitudinal and latitudinal dircction. (Fig (')
d). Use crossfeed handwheel to let table at rear end position. lecvelling the machine in longitudinal and latitudinal direction. (Fig. D)
(7). Table size and grinding capacity

. 7.
8). Lubrication instruction

Lubrication flow chart

Reliability of the machine and economic running are ensured only by the correct choice of lubricant for the individual lubricating points.
1). Lubrication pump: Manual lubrication pump module.
2). Lubricant: SAE30, Lubrication oil of BP, ESSO, MOBIL, or SHELL.
3). Lubricant tank: 1 liters.
4). Lubricating points: Crossfeed leadscrew

Machine bed "V" groove
Vertical leadscrew
Elevation slideways
5). Oil distributor: No.1~9 Model: AJB-IT

No.10~14 Model: AJB-5T
Manufacturer: Nanjing Bijur Machinery Productsitd.
. 8.

Description:

SB1: Emergency push button
XD1: Indicator of power source
SB2: Push button "OFF" of Spindle motor
\therefore SB3: Push button "ON" of spindle motor
SB4: Push button "OFF" coolant or dust-collector power source
SB5: Push button "ON" of coolant or dust-collector power source
\because 3-phase Tr.: Transformer to change local voltage to 220 v
TC: Transformer for 24 v control circuit
CT2.CZ2: Socket for illuminator
CTI.CZ!: Socket for coolant or dust-collector
M1: Magnetic contactor for spindle motor
M2: Magnetic contactor for coolan or dust-collector
Fu: Fuse
FR1: Overload relay of Mi
FR2: Overload relay of M2

(9). Blancing the grinding wheel

Efficient balancing is essential to climinate unnecessary and additional stresss in the wheel. It is also unavoidable to obtain high quality results. Grinding accuracy and surface finish as well life of grinding whed, whecl spindle and bearings depend to some considerable extent on careful balancing. Static balancing will frequently sufficed for this purpose.

The grinding wheel together with be wheel flange is fitted 10 balancing arbor and this assembly is then placed on two accurate parallel knife edges of the wheel balancing base, and balancing can be effected as following: (sec Fig.2).

* Place two correction weight "K" anywhere around the periphery, but at equal distance "a" from weight "G" (Fig. 5)
* Iurn the wheel through 90 " at a timeand see if it is balanee. If not. the Correction weight."K" must be moved until the whecl is in halanec in any Position (Fig. 6)
* After balancing, the whecl must be given a test run of at teast five minutes at full working speed before being used or starting re-balance

After being balanced for the first time, the whed must be mounted on the !rinding spindle of the machine and dressed. This can be done with the parallel dresser on the spindle carrier or with one fitted on the table. When dressing the whecl from the table, the table must be locked longitudinally and then cross-traversed with handwheel. The wheel must be dressed until it runs dead true. The grinding finish is improved, if any out-of-truth in the side walls of the wheel is also removed.

After this first balancing, the wheel must be removed from the spindle again and then carefully re-dressed. After being fitted to the spindle again re-dressed, it is rady for use.

As wear can leads to unbalance, the wheel should be re-checked and ir necessary: rebalanced.

Grinding wheel absorbs humidity and coolant, it is therefore advisable not to shart coolant supply, when the wheel is stationary, otherwise the wheel will absorb liquid on one
. 12.
side only and will then be out of balance. If the wheel is allowed 10 stand for any length of time coolant will collect at the lowest point. Unbalance will also be generated if the wheel is not allowed to idle after operation. Idling is essential to throw-off coolant by centrifugal force.

Prior to place the flange-mounted grinding wheel to the spindle, flange bore and spindle taper must be absolutely clean, and the wheel is pushed by hand onto the spindle "taper. Subsequently, tighten wheel flange securely with fixed bolt or nut. (Fig. 7) To release wheel flange from spindle taper with extractor. (Fig. 8)

* If various material have to be ground, so that the wheel has to be changed frequently, it is more advantageous to change the wheel complete with flange. It would involve unnecessary loss of time and wheel waste to remove the wheel from its mounting every time and re-balance and redress it.

D). SPECIFICATIONS

E). Putting The Machine Into Operation
-.
(1). Wiring ${ }^{\text {o }}$ of power source

Be sure that the wire connection is same as your power source before powcr "ON" the machine.

Attention: Following motors must be wired in aceordance with power şource voltage.

1. Spindle motor.
2. Coolant or dust-collector motor (Optional accessory)
.14
(2). Control panel \& Description

SBI: Emergency push button
XD1: indicator of power source
SB2: Push button "OFF" of spindle motor
SB3: Push button "ON" of spindle motor
SB4: Push button "OFF" of coolant power source
SB5: Push button "ON" of coolant powet source
CZ2: Socket for illuminator
CZ1: Socket for coolant
a). Before operation

It's only after the following instructions have been fully complied with that the machine can be started:

1. Choics of a location free from vibration.
2. Clean up the machine of those anti-rust oil and grease.
3. Installation and levelling of the machine.
4. Lubrication of the machine according to lubrication instruction.
5. Checking the spindle (wheel) rotation direction, must be in clockwise. Please take off the wheel prior to start spindle or it will cause danger if it rotates in counter-clockwise.
b). Operation
1). Power ON \& OFF
6. XDl indicator will lights when clectric control box is ready.
7. SB1 is for emergency stop.
2). Coolant system (Optional accessory)
8. Press SB5 to start coolant pump.
9. Adjust valve to get suitable coolant flow.
F) General Comments of Grinding

The grinding results obtained depend to a very degree on the choice of the correct grinding wheel and suitable operation.
(1) Stock removal efficiency
\therefore For intensive stock removal a coarse grain (about 30-36) should be used. The wheel is dressed by passing the diamond over quickly so that the surface of the wheel is roughened and bites : well.
(2) Surface finish required If fine finish is to be produced, a finer grain wheel is required (40-80). The diamond in this case is passed slowlyover the wheel so as to break up the grain.
(3) Distortion of the workpiece If the workpiece shows too much distortion when being ground, this means that the stock removal was too great and the longitudinal and cross movements of the table was too slow, or the grinding wheel in "clogged".
(4) Undésirable burns and grinding cracks

If. burn marks and grinding cracks appear, this means that the wheel is too hard, or the wheel "clogged".
G) Wheel Inspection

It is absolutely essential to comply fully with following safety rules.
These are intended to protect the operator abainst danger.
Wheel inspection and fitting:
Prior to fitting any grinding wheel, it should always be tested.
Sounding the wheel is a generally accepted test method.
The wheel should be suspended from a mandrel secured to its bore and should then be lightly sounded with a wooden hammer. Even wheels with hair cracks not visible with the bare eye will produce a distorted note in comparison with perfect wheel where the sound is clear. Defective grinding wheel must not be used.
There two pieces of paper washer an both faces of wheel and serve as plastic packings between wheel and mounting flange. The packing
washer must not be removed, when mounting the wheel should side onto the flange easily by hand without the need for force. Wheel flange must be absolutely clean especially on the clamping and location surface, in the spindle bore and thread. H). Dressing The Wheel And Correct Treatment Of Dressing Diamond The diamond is inserts in the dressing device. The sleeve of the device is arranged at an angle of about 5°, so that, when the diamond loses its keenness, it can be turned in the sleeve, along with its holder, thus ensuring that there is always a sharp dia-mondedge available.
Various degrees of roughness can be produced in the ground com-ponent by varying the speed at which the diamond is passed over the grinding wheel.
If there is only about 0.2 mm to 0.3 mm stock removal, it is advisable to roughen the grindingwheel. This is done by feeding the diamond in about 0.03 mm and turning the handwheel rapidky, so that the dressing diamond moves quickly over the wheel. This makes the wheel bite well and the stock removal is good.
If the component is to be finish ground to size with the same grinding wheel, the wheel must be dressed again, this time slowly, in two or three passes, with the diamond fed in onlyabout 0.01 mm .
Freouent light dressing is better for the life of the grinding wheel and the diamond than a heavy cut.
"When dressing," the diamond should always be cooled, if possible, but sudden cooling is dangerous, as it can lead to the diamond being split.
As the diamond is very brittle because of its extraordinary hardness and being sensitive to even the slightest knock, naturally cracks easily.
When dressing, begin in the center, as the edges are usually worn down further. If dressing is begun at the worn edges, there is danger of the higher pressure in the center overstressing the diamond and shattering it.
. 18.

Experience has shown that, with highly accurate grinding, dressing with the hand-operated dressing device on the spindle carrier is inadequate. The hand operation necessarily causes slight undulations is the surface of the wheel.

(2)

(1) The new diamond is inclined at the correct angle to the wheel.
(2) As a face has formed on the diamond, it must be turned about its axis.
(3) The new point actslike a new diamond again.
(4) Begin in the middle of the width.

After a certain time, the diamond must be changed in its holder, i.e.it must be reset to ensure economocal operation. This resetting should be under taken in time, before any of the holder itself has been ground off. Otherwise, there is first of all the danger of breaking the diamond out and losing, or secondly, of its being too small to be reset. This is really false economy.

(1)

(2)

(3)
(1) The new diamond.
(2) The diamond now be reset.
(3) Togete The diamond can no longer be reset as it has no more holder. Resetting should be done by specialists only.
1). Storage of Grinding Wheels

The wheels should be kept in special racks in a dry place and must be pretected from. knocks and jolts,- especially when \therefore they are being transported.
As a rule, they should be stood on edge, but thin wheels and wheels with a sharp edge must be laid flat on an even surface. Grinding wheels must not be allowed to come into contact with oil or grease. An oilsoaked wheel loses its bite and its application is very limited.
J. Selection Of Suitable Grinding Wheels

Grinding wheel markings: For instance WA 46 K 8 V
WA: Kind of abrasive
46: Grain size
K: Grade
8: Structure
V: Bond type
(a). Kinds of abrasive

A: For common steel grinding
WA: For higher hardness material grinding, such as heat -treated steel, alloy steel, etc.
H: Suitable for higher hardness material, particularly high speed steel
C: For cast iron and non-ferrous grinding
GC: For super hard grinding such as tungsten. carbide steel
(b). Grain size

Coarse: $10,12,14,16,20,24$
Medium: $30,36,46,54,60$
Fịne: $70,80,90,100,120,150,180$

Grinding condition	Grain	Foarse
\therefore	Stock removal	much
Surface roughness	coarse	little
Works hardness	soft	hard
Surface contacted	wide	narrow
Dia. of the wheel	big	small

(c). Grade: It indicate the strength of the bond which hold abrasive.
Soft: A-H
Medium: I to P
Hard: Q to Z

Grinding Grade condition	Soft	Hard
Works hardness	hard	soft
Surface be contacted	wide	narrow
Movement of work	slow	quick
Wheel speed	quick	slow

(d). Structure: The structure number of a wheel refers to the relative spacing of the grains of abrasive; the larger number, the wider the grain spacing.
Close: $0,1,2,3,4,5$,
Medium: 6,7,8,9,
Wide: 10,11,12.

Grinding condition	Wide	Close
Surface roughness	coarse	fine
Surface be contacted	wide	narrow
Wowks hardness	soft	hard

(e). Bond:

V: Vitrified,
R: Rubber
S: Silicate,
B: Resinoid,

E: Shellac
K). Wheel Be Recommended

Wheel diameter Material be ground		Under 205 mm
Carbon steel	under HRC25 ${ }^{\circ}$	WA 46 K
	above HRC25 ${ }^{\circ}$	WA 46J
Alloy steel	under HRC55 ${ }^{\circ}$	SA WA 46 J
	above HRC55 ${ }^{\circ}$	SA WA 46H
Tool steel	under HRC60 ${ }^{\circ}$	SA 46 I
	above HRC 60°	SA 46 H
Stainless steel		$\begin{aligned} & \text { SA } 46 I \\ & \text { WA } \end{aligned}$
Cast iron		C 46J
Brass		C 30J
Aluminum alloy		C 30J
Tungsten Carbide		GC 60H-100I
Glass		C60K
Marble		$\stackrel{C}{G C} 36 \mathrm{M}$

L). Choice Of The Grinding Condition
(1). Down feed of grinding wheel

	Down feed			Cross feed
Work material Finish	Cast iron, Soft steel, Hardened steel	Stainless \& Heat resistant steel	Tool steel	
Fine	$\begin{aligned} & 0.0002-0.0004^{\prime \prime} \\ & 0.005-0.01 \mathrm{~mm} \end{aligned}$		$\begin{aligned} & 0.0002- \\ & 0.006 \mathrm{~F} \\ & 0.005 \mathrm{~mm} \\ & 0.015 \mathrm{~mm} \\ & \hline \end{aligned}$	under 1/4 of wheel thickness
Rough	$\begin{aligned} & 0.0006-0.0012^{\prime \prime} \\ & 0.015-0.03 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 0.0008-0.0012^{\prime \prime} \\ & 0.02-0.03 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 0.0008- \\ & 0.0012^{\prime \prime} \\ & 0.02- \\ & 0.03 \mathrm{~mm} \end{aligned}$	under $1 / 2$ of wheel thickness

Down feed	Great	Small
Grinding resistance	great	small
Heat produced	much	less
Surface finish	rough	fine
Wheel worn out	much	little

. 22 .
(2). Cross feed

Cross feed	Great	Small
Grinding resistance	great	small
Heat produced	much	less
Surface finish	rough	fine
Wheel worn out	much	little

(3). Table longitudinal traverse

Table traverse	Quick	Slow
Grinding resistance	great	small
Heat produced	less	much
Surface finish	rough	fine
Wheel worn out	much	little

Suitable speeds of the table traverse

Work material	Soft steel	Heat treated steel	Tool steel	Cast iron
Speed: M/Min.	$6-15$	$20-25$	$6-25$	$16-20$

(4). Suitable peripheral speeds of wheel: $1200-1800 \mathrm{M} / \mathrm{Min}$

Wheel speed	Quick	Slow
Condition	small	great
Grinding resistance	much	less
Heat produced	fine	rough
Surface finish	small	great
Wheel worn out	bad	better
Safety		

Material	Peripheral
Steel	$20-30 \mathrm{M} / \mathrm{Min}$.
Cast iron	$18-20 \mathrm{M} / \mathrm{Min}$.
Tungsten Carbide	$8-18 \mathrm{M} / \mathrm{Min}$.
Zinc alloy and light metal	$25-30 \mathrm{M} / \mathrm{Min}$.

M). Use of The Optional Attachment
\therefore (a). Parallel Dressing Attachment The wheel can be dressed either by diamond tool on the chuck or on the parallel dressing attachment which mounted on spondle carrier. The diamond tool is arranged at an angle to the center line of the wheel as shown on Figure, so that when the diamond loses its keenness it can be turned an angle, ensuring that there is always a sharp diamond edge available. The dressingmethod and points are same as "Dressing the wheel". Experience has shown that, with highly accurate grinding. dressing with the diamond which mounted on the magnetic chuck is better than which on the spindle carrier (the former is more stable than latter) as the latter condition will cause slight undulation in the surface of the wheel.

(b). Angle forming attachment
(1). Let the Attachment be attracted to the magnetic chuck, lreeping a 90° right angle between the attachment and the wheel. The magnetic chuck should be kept level.
(2). The value in question will be the Sine of the angle times 50 . That is $B=\operatorname{Sin} \theta \times 50$
(3). Get a Block gauge the thickness of which equals that of B (or make one)
(4). Put this Block gauge under the base of the sine Bar stand. Fix with the fostening boftr and the fromine is done

θ bigger than 45°
($45^{\circ}-90^{\circ}$)
θ small than 45°
$\left(0^{\circ}-45^{\circ}\right)$
(5). Degree and block gauge thickness conversion table

Deg.	Sin.	Block gauge thickness	Deg.	Sin.	Block gauge thickness	Deg.	Sin.	Block gauge thickness
1°	0.0175	0.875	22°	0.3746	18.730	43°	0.6820	34.100
2°	0.0349	1.745	23°	0.3907	19.535	44°	0.6947	34.735
3°	0.0523	2.615	24°	0.4067	20.335	45°	0.7071	35.355
4°	0.0698	3.490	25°	0.4226	21.130			
5°	0.0872	4.360	26°	0.4384	21.920			
6°	0.1045	5.225	27°	0.4540	22.700			
7°	0.1219	6.095	28°	0.4695	23.475			
8°	0.1392	6.960	29°	0.4848	24.240			
9°	0.1564	7.820	30°	0.5000	25.000			
10°	0.1736	8.680	31°	0.5150	25.750			
11°	0.1908	9.540	32°	0.5299	26.495			
12°	0.2079	10.395	33°	0.5446	27.230			
13°	0.2250	11.250	34°	0.5592	27.960			
14°	0.2419	12.095	35°	0.5736	28.680			
15°	0.2588	12.940	36°	0.5878	29.390			
16°	0.2756	13.780	37°	0.6018	30.090			
17°	0.2924	14.620	38°	0.6157	30.785			
18°	0.3090	15.450	39°	0.6293	31.465			
19°	0.3256	16.280	40°	0.6428	32.140			
20°	0.3420	17.100	41°	0.6561	32.805			
21°	0.3584	17.920	42°	0.6691	33.455			

*THe value of Block gauge thicknessmust tires 2 when apply this table to Sine Bar attachment.
(c). Sine Bar

The Sine Bar is used to chuck the inclined angle of the magnetic chuck; when the angle forming surface is large.
(1) The value in question equals the sine of the angle times 100 , $B=\operatorname{Sin} \theta \times 100$
(2) Get a block gauge the thicknese of which equals that of B.
(3) Put thisgauge at one end of the Sine Bar and let it be attracted to the inclinable magnetic chuck. This Sine Bar shall be kept parallel to the longitudinal direction of the machine.
(4) Press the dial gauge against the surface of the Sine Bar and meanwhile tirn the cross feed hand wheel, so that the saddle moves back and forth for the checking of the accuracy of the magnetic chuck.

1. Mandrel
2. Inclincalb Magnetic Chuck
3. Sine Bar
4. Mandrel of the Magnetic Chuck
5. Block gauge
6. Stop block
7. Application of the trigonometry

(d). Radius Forming Attachment The radius Forming Attachment is composed of a main stand, several swing rods and a diamond tool.
(1) Main Stand

(2) Swing rod and diamond tool

A name plate is attached to the swing rod with the A and B to mean:
A: the distance between the upper rim and the center
B: the distance between the bottom rim and the center
The R forming is the adjustment of the distance between the diamond tool and the swing rod center so that the R shaping results.
(3) To determine the concave and convex R :
a. If the tool is parallel to the center line, it equals $O R$.
b. To determine the convex R : Put the swing rod on a place disk. Put a block garge of proper thickness under the diamond tool. Then $\mathrm{R}=\mathrm{X}-\mathrm{A}$
c. To determine the small concave $R=A-X$

d. To determine the big concave $R: R=B+X$

Same thickness block gauge (X)
e. Note:

1. The base and side of the grinding wheel shall be well -dressed.
2. The Radius Forming Attachment shall be parallel to the grinding wheel,
3. The diamge tool shall be parallel to the Radius Forming Attachment.
(4) Operation of the Radius forming attachment:
a. Find the center of the grinding wheel, then fix the work table

b. Turn the down-feed handwheel at $1 / 3$ on the width of the wheel so that the wheel cuts into 0.02 mm of the diamond tool. Now turn the cross feed handwheel to. dress the grinding wheel, and turn the calibration reading on the down feed back to zero.

c. Turn the diamond tool over an angle 90° and elevate it into a proper position (greater than the R size in question).

d. Elevate the grinding wheel so that it goes away from the diamond tool and the wheel in such a position that the distance between the side of the wheel and the center of the diamond too is just R.

e. Move the diamond tool $(R+a)$ leftward, with " a " found in the following table.
f. Turn the downfeed handwheel, so that the grinding wheel approaches the diamond tool.

g. Turn the swing rods 90° each time, inching 0.05 mm till the R is determined.

h. The wheel finally becomes the following shape.

(e). Coolant System

Insert the power source plug in socket (at the rear side of electric control box). Press the pushbutton switch to start the coolant pump, the pump should rotates in clockwise direction, if not, interchange the any two cords of three-cord cable. Adjust coolant flow by turning the ball valve to suitable rate.
Cooling water collected from table and returns to coolant tank through return hose then filtered in the coolant tank by turns of cabinet \#1,2,3.

* Coolant tank capacity: 46 liters
* Coolant pump: 90Wx2P

(f) Common cases in Side Grinding

In the case shown in the figure above, the side-grinding wheel and the work have a smaller contact surface, in which case the efficiency is higher, and the surface roughness is better.
(2)

In the figure above, the wheel and the work have two sections of contact, and the surface of grinding is bad. The surface has to be corrected into the shape shown in (1).
(3)

The wheel did not cut to "Relief Angle", thus it contacts the whole face of the work, causing the surface of processing rough and rugged. Also, the greater face of contact will cause burns and cracks.
(4)

The "Relief Angle" of the wheel is lower than the surface of the work, so that the work face becomes two sections, the upper section resembling that in (3) and the lower section in (1). Now it is necessary to entarse the "Relief Angle" paitso that it will higher than the face of the work.
30.
(5) If the spindle does not constitute a right angle with the work table surface, the side faces will turn out to be as shown:

(g). Right Angle Grinding
(1) Tools

Inclinable Magnetic Chuck Block gauge
Clamp
(2) Use of the jigs and tools: take the grinding of the bolck of six faces A, B, C, D, E, F. For example:
a. Under 200 mm :

* Grinding of the first basic face, or the surface grinding of A and B.

* Grinding of C and D

* Grinding of the first basic face or A.
* Grinding of C and D : turn the inclinable magnetic chuck into 90°

D

* Grinding of E and F

(3)Precaution: The gringing of right angle depends on the patience and clever mindedness of the operator for its precision. For instance, whether the burrs after grinding is done well, whether the tools are kept clean, whether the work table are kept clean, the accuracy of the angle gauge, etc. all will have a direct influence over the precision of the product.

1
N. COMPLETE KNOCK DOWN DRAWINGS \& PARTS LISTS WHEN ORDERING PARTS, PLEASE MENTION:
․ 1. MACHINE MODEL \& SERIAL NUMBER
2. INDEX NUMBER
3. PARTS NO. AND PARTS NAME
4. QUANTITY

Table Saddle Ass'y.i.. 34
Column Ass'y.. 36
Downfeed (Lower) Ass'y... 39
Spindle Ass'y.. 42
Crossfeed Ass'y... 44
Longitudinal Hand Feed Ass'y.. 46

Parts Name	Q'ty
Socket. Head Cap Screw	5
Upper Cover Of Column	1
Cup Head Machine Screw	23
Upper Hold Plate	1
Cup Head Machine Screw	2
Socket Head Cap Screw	4
Motor Bracket	1
Socket Head Cap Screw	2
Cup.Head Machine Screw	2
Shield Guide	2
Cup Head Machine Screw	4
Cup Head Machine Screw	2
Bottom Hold Plate	1
Washer	6
Column	1
Hexagonal Head Tap Bolt	4
	2
Socket Head Cap Screw	4
Right Cover Of Column	If
Shield Dust	2
Shield Dust	1
Spindle Holding	1
Shield Dust	2
Shield Dust	1
Shield Dust	2
Dust Direction Fold Fabric 2	
Shield Dust	1
Shield Dust	1
Socket Head Cap Screw	10
Shield Dust Guide Rail	2

Index No. Parts No. 31 M6X12/GB818-85 $32 . . \quad$ A10x60/GB118-86

Parts Name Screw

Taper Bolt

Q' ty 2

1 1
\because
:
*. 38.

DOWN FEED . (LQWER) ASS'Y

dex No.	Parts No.	Parts Name	Q'ty
1 -	M10x80/GB4141.5-84	Grip	1
2%	M1.2x50/GB4141.29-84	Handwheel Nut	1
3	4x14/GB1096-79	Key	1
4 \%	1014	Handwheel	1
5	1114	Handwheel Bush	1
6	1112	Adjusting Screw	1
7	1113.	Graduation Dial Bush	1
8	5x25/GB1096-79	Key	1
9	M6x20/GB79-85	Adjusting Screw	1
10	1013	Bearing Housing	1
11	1108	Washer	1
12	$4 \times 30 \times 80 / \mathrm{Q} 81-1$	Spring	1
13	1109	Shaft	1
14	-6x14/GB1096-79	Key	1
15	M8x25/GB70-85	Socket Head Cap Screw	2
16	A4x32/GB117-86	Taper Bolt	1
17	3014	Connector	1
18	3111	Elevating Leadscrew	1
19	D8108/GB301-84	Thrust Ball Bearing	1
20	M10x30/GB70-85	Socket Head Cap Screw	3
21	1204	Elevating Leadscrew Nut	1
22	D8111/GB301-84	Thrust Ball Bearing	1
23	1118	Gear	1
24	1119	Adjusting Spacer	1
25	6x25/GB1567-79	Thin Key	1
26	1120	Bevel Gear	1
27	40/GB858-88	Ratchet Washer	1
28	M40x1.5/GB812-88	Check Nut	1
29	1107	Small Bevel Gear	1
30	A $5 \times 28 / \mathrm{GB} 117-86$	Taper Bolt	1
31	204/GB292-83	Ball Bearing	1

DOWN FEED (LOWER) ASS'Y

Index No.	Parts No.	Parts Name	Q' ty
32	1016 A	Bevel Gear Bracket	1
33	25/GB894.1-86	Snap Ring	1
34	M8x30/GB70-85	Socket Head Cap Screw	3
35	D1205/GB281-84	Self-Aligning Ball Bearing	2
36	1110	Graduation Dial Holder	1
37	$25 / G B 858-76$	Ratchet Washer	1
38	M25x1.5/GB812-76	Check Nut	1
39	1111	Graduation Dial	1
40	M12X35/GB70-85	Socket Head Cap Screw	3
41	1121	Link Plate	1
42	$14 / G B 97.1-85$	Washer	1

CROSSFEED ASS'Y

Index No.	Parts No.	Parts Name	Q'ty
1 -	2117	Crossfeed Leadscrew	1
2	-1011	Crossfeed Nut Baise	1.
3	1201	Leadscrew Nut	
4	5x20/GB1096-79	Key	1
5	M8x25/GB70-85	Socket Head Cap Screw	
6	10/GB93-87	Washer	
7	M10x55/GB70.85	Socket Head Cap Screw	4
8	2116	Bearing Housing	1
9	36204/GB292-83	Angular Contact Ball Bearin	2
10	2115	Inner Spacer	1
11	2114	Outer Spacer	1
12	2113	Graduation Dial Holder	1
13	2112	Graduation Dial Bush	1
14	2111	Graduation Dial	1
15	16x160/GB4141.24-84	Handwheel	1
16	M12x50/GB4141.29-84	Handwheel Nut	1
17	1101	Leadscrew Backlash Adjuster	-
18	M8x16/GB70-85	Socket Head Cap Screw	2
19	M6x20/GB70-85	Socket Head Cap Screw	4
20	$5 \times 32 / \mathrm{GB1096-79}$	Key	1
21	1112	Adjusting Screw	1
22	M10x80/GB4141.4-84	Grip	1

LONGITUDINAL HAND FEED ASS'Y

Index No	Parts No.	Parts Name	Q'ty	
1	. 2013° -	Frame Drum .	1	
2	$\therefore 2125$	Bushing	1	
\% 3	1x19-3.0-170	Wire Rope	1	
\% 4	60105/GB278-89	Ball Bearing With Shields	2	
管 5	M6x16/GB70-85	Socket Head Cap Screw	6	
6	2114	Inner Gear	1	
7	25/GB894.1-85	Snap Ring	1	
8	20/GB894.1-85	Snap Ring	1	
9	M6x16/GB70-85	Socket Head Cap Screw	4	
10	$4 \times 16 / \mathrm{GB1096-70}$	Key	1	
11	2121	Bush	1	
12	2120:	Handwheel Bush	1	
13	4x20/GB1096-70	Key	1	
14.	M12x50/GB4141.29-84	Handwheel Nut	1	
15	M10x80/GB4141.4-84	Grip	1	
16	M5x8/GB78-85	Set Screw	1	
17	M5x8/GB78-85	Set Screw	3	
18	2014	Drum	1	
1.9	M8x16/GB70-85	Socket Head Cap Screw	4	
20	M10/GB6172-86	Hexagonal Nut	4	
21	2102	End Plate	2	
22	2103	Adjusting Bolt	2	
23	M12x25/GB5783-86	Hexagonal Nut	1	
24	2304	Brake Pin	-1	
25	80104/GB278-89	Ball Bearing With Shields	1	
26	20/GB894.1-86	Snap Ring	1	
27	2124	Pinion Shaft	1	
28	27/GB893.1-86	Snap Ring	1	
29	80204/GB278-89	Ball Bearing With Shields	1	
30	M5x8/GB78-85	Set Screw	1	
31	$18 \times 200 / \mathrm{GB4141.24-84}$	Handwheel	1	

O). Electrical parts list

$$
\because \quad \text { it }
$$

P). Trouble Shooting
(1). Grinding Defects

Defects
Causes
Remedy

* chatter marks: Machine not free
on grinding from vibration surfăce

Unsteady running of grinding wheel

Grinding wheel too hard or clogged

Balance grinding wheel in usual ways
Check spindle motor's coupling;
Check levelling screw on machine base,
Dress wheel on periphery on both sides, Rebalance grinding wheel, Check table speed,
Reduce downfeed cutting depth, Reduce crossfeed amount, Use softer or coarser grinding wheel,
Reduce depth of cut (when plunge grinding)
Check dressing diamond, Dress grinding wheel more rougher,
Dress grinding wheel more frequency,
Table not fully Check steel ball,
*Burned mark Grinding wheel too on grinding hard or too fine surface
supported Check steel ball guide ways, Use softer or coarser wheel or reduce periphery speed of grinding wheel, Dress grinding wheel coarser, make it rougher, Downfeed too great Reduce downfeed amount, Reduce crossfeed amount, Inefficient cooling Increase flow of coolant, Fill up coolant tank with fresh coolant, Use stronger mixture,

. 49 .

1

Installation procedure for timing belt

A. Fasten two inner hex screws for aluminum housing 1 on both end of table 2.
B. Clean steel balls $\&$ retainers 3 , table 2, guideways on saddle 4, then apply clean lubricant oil. Put clean retainers \& balls in middle position of guideways.
C. Put table 2 in the middle position of saddle 4
D. Pull left end of belt and fasten it on left bracket by using clamping plate $5 \&$ screws 6.
E. Pull right end of belt and fasten it on right bracket by using clamping plate $8 \&$ screw 9.
F. Release screw 12 a little bit, release nut 11 , insert screw 10 into belt to suitable position and lock it by using nut $11 \&$ screw 10 , fasten screw 12.

