

**KCG-18S Centerless Grinder** *Operation Manual* 



# www.kentusa.com | 1.800.KENT.USA

# **Contents**

| 1. | SA  | FETY   | 7 <b>TIPS</b>                                      | 1-1  |
|----|-----|--------|----------------------------------------------------|------|
|    | 1.1 | Warn   | ning tips                                          | 1-1  |
|    | 1.2 | Gene   | ral safety tips                                    | 1-2  |
|    | 1.3 | Mach   | nine safety tips                                   | 1-3  |
|    | 1.4 | Tips f | for electrical equipments                          | 1-4  |
|    |     |        | SAMPLE AND POSITION FOR THE WARNING SIGN .         | 1-5  |
| 2. | MA  | CHI    | NE SPECIFICATION                                   | 2-1  |
|    | 2.1 | KCG    | -12 series specification                           | 2-1  |
|    | 2.2 | KCG    | -18 series specification                           | 2-3  |
|    | 2.3 | KCG    | -20 series specification                           | 2-5  |
|    | 2.4 | Mach   | nanism and part list                               | 2-7  |
|    | 2.5 | Parts  | function                                           | 2-10 |
|    | 2.6 | Stand  | lard accessories                                   | 2-12 |
|    | 2.7 | Optio  | onal accessories                                   | 2-13 |
| 3. | MA  | CHI    | NE LAYOUT                                          | 3-1  |
|    | 3.1 | Floor  | · space                                            | 3-1  |
| 4. | TR  | ANSI   | PORTATION & INSTALLATION                           | 4-1  |
|    | 4.1 | Liftin | ng                                                 | 4-1  |
|    | 4.2 | Trans  | sportation                                         | 4-2  |
|    |     | 4.2.1  | Center-of-gravity position of forklift and machine | 4-2  |
|    |     | 4.2.2  | Position offorklift transportation                 | 4-3  |
|    | 4.3 | Found  | dation                                             | 4-4  |

|    | 4.4 | Leveli | <b>ing</b> 4-5                                |
|----|-----|--------|-----------------------------------------------|
|    | 4.5 | Clean  |                                               |
| 5. | MF  | ECHA   | NISM AND ADJUSTMENT 5-1                       |
|    | 5.1 | Balan  | ce of grinding wheel5-1                       |
|    | 5.2 | Assen  | nble and disassemble of grinding wheel5-2     |
|    |     | 5.2.1  | Procedure                                     |
|    |     | 5.2.2  | <i>Tips:</i>                                  |
|    | 5.3 | Spind  | le correction                                 |
|    | 5.4 | Grind  | ling wheel dressing5-10                       |
|    | 5.5 | Assen  | nble and disassemble of dresser               |
|    |     | 5.5.1  | Procudure                                     |
|    | 5.6 | Intodu | uction of regulating wheel5-15                |
|    | 5.7 | Work   | restand blade support5-28                     |
|    |     | 5.7.1  | Workrest                                      |
|    |     | 5.7.2  | Blade                                         |
|    |     | 5.7.3  | Ejection and adjustment workrest andblade5-30 |
|    | 5.8 | Adjus  | stment of thrufeed guide plate5-31            |
| 6. | OP  | ERAI   | CION                                          |
|    |     |        |                                               |
|    | 6.1 | Opera  | ation key description6-1                      |
|    | 6.2 | Mach   | ine switch off procedure6-10                  |
|    |     | 6.2.1  | Operaton panel                                |
|    |     | 6.2.2  | Auto griding operation panel6-11              |
|    |     | 6.2.3  | Switch of proximal regulating wheel motor     |
|    | 6.3 | Mach   | ine switch off procedure6-12                  |
|    | 6.4 | Cable  | connection and trial run6-13                  |
|    | 6.5 | Work   | ing lamp replacement6-14                      |

|    | 6.6 | Regu   | ating wheel servo motor parameter list6-15    |
|----|-----|--------|-----------------------------------------------|
| 7. | MA  | AINTI  | ENANCE & REPAIR7-1                            |
|    | 7.1 | Notes  | of maintenance & repair7-1                    |
|    | 7.2 | Perio  | d7-2                                          |
|    | 7.3 | Mont   | hly check list7-3                             |
|    | 7.4 | Oil-ba | ased maintenance                              |
|    | 7.5 | Lubri  | cation system7-6                              |
|    |     | 7.5.1  | Lubricator                                    |
|    |     | 7.5.2  | Lubrication parts (12S.18S.20Sseries)7-9      |
|    |     | 7.5.3  | Lubrication parts (12BN.18.18A.18B.20 series) |
|    | 7.6 | Hydr   | aulic system7-12                              |
|    |     | 7.6.1  | Hydraulic circuit7-12                         |
|    |     | 7.6.2  | Hydraulic pressure adjustment                 |
|    |     | 7.6.3  | Flow adjustment                               |
|    | 7.7 | Coola  | ant selection                                 |
| 8. | TR  | OUB    | LE SHOOTING                                   |
|    | 8.1 | Comr   | non cause & remedy8-1                         |
| 9. | GR  | RINDI  | NG APPLICATION9-1                             |
|    | 9.1 | Cente  | erlessgrinding principle9-1                   |
| ~  | 9.2 | Cente  | erless grinding method                        |
|    |     | 9.2.1  | Thrufeed method                               |
|    |     | 9.2.2  | Infeed method9-4                              |
|    |     | 9.2.3  | Endfeed method9-4                             |
|    |     | 9.2.4  | Tangential feed method9-4                     |
|    | 9.3 | Grind  | ling method for different workpiece9-5        |
|    |     | 9.3.1  | Short circle workpiece                        |

|      | 9.3.2 Disc-plateworkpiece                          |      |
|------|----------------------------------------------------|------|
|      | 9.3.3 Long bar workpiece                           |      |
|      | 9.3.4 Attache-head workpiece                       | 9-6  |
|      | 9.3.5 Cross-shape workpiece                        |      |
|      | 9.3.6 Multi-size workpiece                         | 9-6  |
|      | 9.3.7 Cone workpiece                               | 9-7  |
| 9.4  | 4 Introduction of grinding wheel                   | 9-8  |
| 9.5  | 5 Grinding wheel circumferential speed             | 9-13 |
| 9.6  | 6 Grinding difficulty and solution                 | 9-16 |
| 9.7  | 7 Spare parts                                      | 9-19 |
| 9.8  | 8 Size List of Grinding Wheel and Regulating Wheel |      |
| Riod | etbolic                                            |      |

## 1. SAFETY TIPS

This operation manual is to decscribe how to install, operate the machine and a basicmaintenance and inspection. This manual will teach you how to operate the machine safely and correctly to make this machine work appropriately. Please read this instruction manual carefully before installation and operation. This safety tips and warning sign of manual are very important. Please fully understand before operating machine.

## **1.1** Warning tips

- To avoid serious injure, the owner and all operator should provide encesary protection equipments for the regular operation and special operation. The owner should select qualified person with proper grinding trainning to operate and maintain the machine. Also, please follow below safety rules and local laborer safety laws.
  - This machine will be only operated by qualify operator who knows the machine's specification and safety rules very well.
  - When machine is running, don't get close to any movable parts of machine.
     If need, please turn off the machine power.
  - 3. Pleare wear protective hair cap or hold hat to prevent long hair from failing down during operation.
  - Do not wear relaxed clothing and gloves during operation. Long sleeves and neckties must be buckled.
  - 5. Please wear goggles and protecton mask to avoid damage by accident or mis-operation. Wear safety shoes while operating this machine.
  - 6. Do not operation this machine without any guidance and supervision.

- Please stop the spindles when change / adjust the workpiece or equip / dismantle the accessories.
- 8. Do not use inflammable or poisonous coolant.
- 9. Please stop the machine immediately when find out any safe problem and ask for help from local agent.
- 10. Do not remove any warning sign from the machine.

#### **1.2** General safety tips

To eliminate accident and keep the machine working well, the safety considerations are very important. Pay attenton on the safety rules will much increase the productivity.

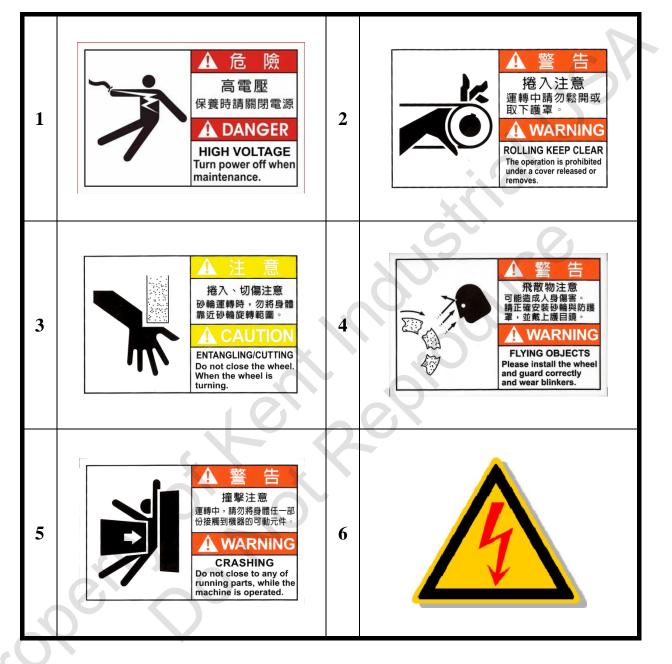
- 1. Wear the goggles and mask.
- 2. Wear the safety shoes.
- 3. Wear the safety helmet and overall and tight the cuff.
- 4. Do not wear gloves while operating machine.
- 5. Keep the area where around machine clean, dry and bright anytime.
- 6. Make sure machine foundation is rigid and steady, also keep floor tightened around the operation area.

## **1.3 Machine safety tips**

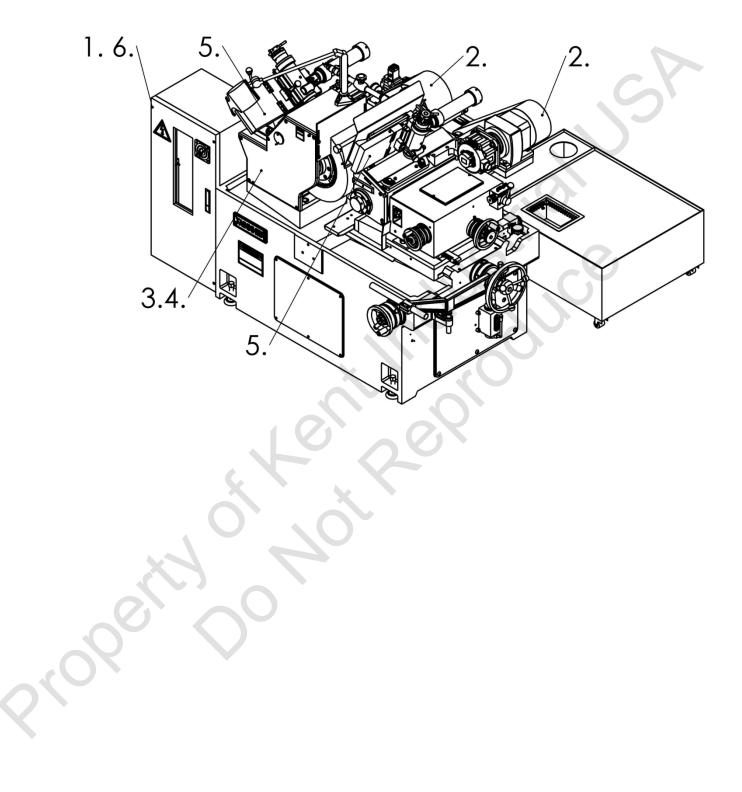
Before operating this machien, the operator must fully understand this manual.

- The operator and service person must be pay attention to the warning sign.
   Do not remove or damage.
- 2. All guard and doors should be secured all the time except maintenace to prevent dirts entering controller.
- 3. Do not move limit switch to change the slide travel.
- 4. Use proper tools to adjust, maintain and repair machine.
- 5. Any problem occured, please stop the machine immdediately.
- 6. Before operation daily, pease aware of below tips.
  - When machine is running, do not close to any movement or rotation aprts, such as grinding wheel and regulating wheel.
  - Do not use hand to clearn the chips which on the wheel and worktable.
     Please clean after machine is stoped.
  - 3) Stop teh machine while adjusting the direction of coolant spray.
  - Do not try to touch or change the workpiece when worktable moving or workpiece is near ginding wheel.
  - 5) Place workpiece between centers and make sure it's tightened.
  - 6) Do not use objects to force machine stop.
  - 7) Stop the machine immediately when unusual situation happened during the machine is running. Restart the machine after problems are solved.
  - 8) Make sure the work space is enough for the running stroke of machine worktable. Keep irrelative staff away from the machine.
- 7. Standard operation process for daily machine turn off.
  - 9) Turn off the power.

- 10) Clean worktable.
- 11) Apply lubricator on sliders and cover to prevent dust.


#### **1.4** Tips for electrical equipments

Please notice below tips before maintainance and inspection.


- 1. Do not hit controller and pressure control board.
- 2. Please use appointed wires specification which listed on manual. Wires length shouldn't be to long. If wires drag on floor, it must be covered up.
- 3. Do not change pressure control board or any other buttons without authority.
- 4. Do not over load the socket and connector.
- 5. Turn off main power before changing thefuse or any electrial parts.
- 6. Turn off NC controller, pressure control board and mainpower and lock at off position while checking electrical equipment to avoid people turn on.
- 7. Do not use any wet tools to touch electrical equipment.
- Please use proper and indicated fuse and never use high volume fuse or cooper.
- 9. Open cabinet shortly to prevent sun light damage.
- Check electrical circuit screws periodically especially higher current like NFB, MS, Motors...etc., see if any loosen there to avoid mal-function or shorted.

## **1.5 The SAMPLE AND POSITION FOR THE WARNING**

SIGN



## Warning Sign Location



## 2. MACHINE SPECIFICATION

## 2.1 KCG-12 series specification

| MODELS                                 | KCG-12BN                  | KCG-12S                  |  |  |
|----------------------------------------|---------------------------|--------------------------|--|--|
| ITEMS                                  |                           |                          |  |  |
| Std work rest(dia)                     | $\phi$ 1~ $\phi$ 25mm     |                          |  |  |
| Special work rest(dia)                 | φ 25~ φ 40mm              |                          |  |  |
| Grinding wheel size(dia×width×hole)    | φ 305×1                   | 50× ψ 120                |  |  |
| Regulating wheel size (diaxwidthxhole) | $\phi$ 205×150× $\phi$ 90 |                          |  |  |
| Grinding wheel speed                   | 1900 R.P.M                |                          |  |  |
| Regulating wheel speed                 | 20-337 R.P.M<br>(7 step)  | 10-300 R.P.M<br>Stepless |  |  |
| Grinding wheel motor                   | 7.5HP                     |                          |  |  |
| Regulating wheel motor                 | 1HP*6P                    | 1.8KW<br>servo motor     |  |  |
| Hydraulic pump motor                   | 1HP                       |                          |  |  |
| Coolant pump motor                     | 1/8HP                     |                          |  |  |
| Regulating wheel feed on handwheel     | 4mm(Rev)<br>0.02mm(Gra)   |                          |  |  |

#### 2 MACHINE SPECIFICATION

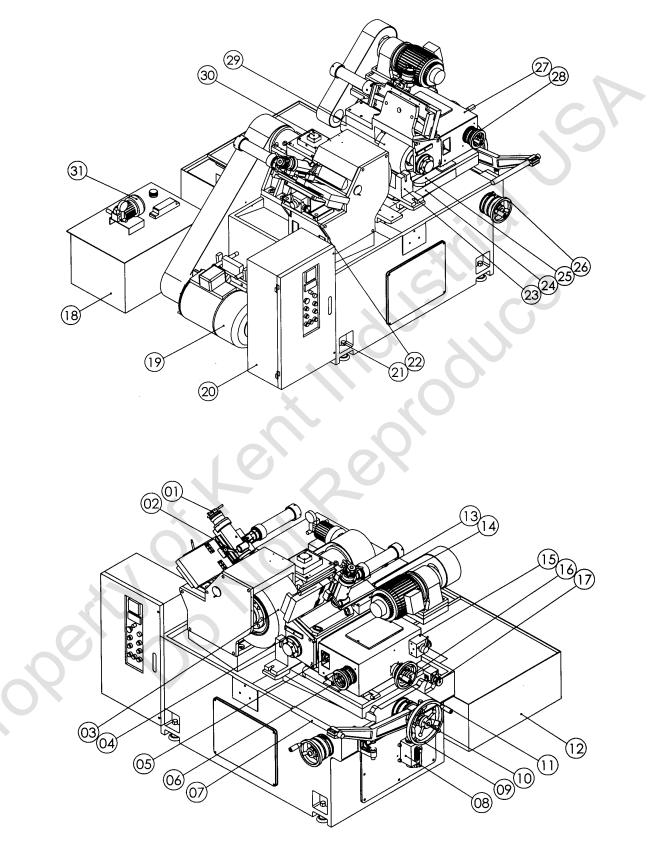
- -

| MODELS                          | KCG-12BN                | KCG-12S           |
|---------------------------------|-------------------------|-------------------|
| ITEMS                           |                         |                   |
| Table feed on handwheel         | 7mm(Rev)<br>0.05mm(Gra) |                   |
| Table micro feed on handwheel   |                         | n(Rev)<br>um(Gra) |
| Dressing handwheel              |                         | m(Rev)<br>m(Gra)  |
| Regulating wheel tilt angle     | +5°-                    | ~-3°              |
| Regulating wheel swivel angle ± |                         | 5°                |
| Machine size (L×W×H)( approx)   | 1800×1400               | 0x1400mm          |
| Net weight (approx)             | 160                     | Okgs              |
| Shipping gross weight (approx)  | 175                     | Okgs              |
| Packing size(L×W×H) (approx)    | 2300×1100               | 0×1800mm          |
|                                 |                         |                   |

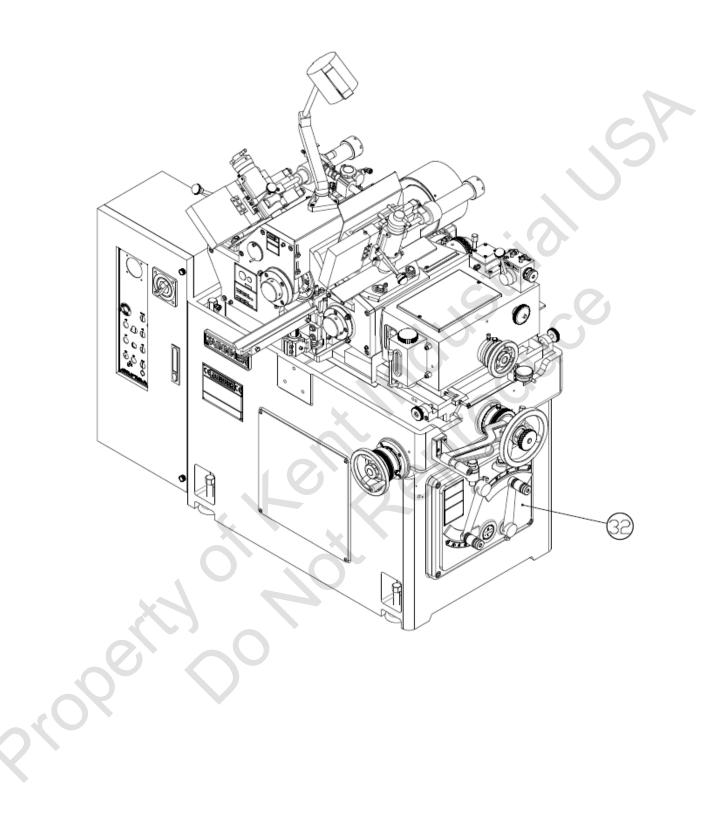
## 2.2 KCG-18 series specification

| MODELS                                    | KCG-18                     | KCG-18S                  | KCG-18A                   | KCG-18AS                | KCG-18B                   | KCG-18BS                |  |
|-------------------------------------------|----------------------------|--------------------------|---------------------------|-------------------------|---------------------------|-------------------------|--|
| Std work rest(dia)                        | <i>φ</i> 1~ <i>φ</i> 50mm  |                          |                           |                         |                           |                         |  |
| Special work rest(dia)                    | φ 40~ φ 100mm              |                          |                           |                         |                           |                         |  |
| Grinding wheel<br>size(dia×width×hole)    | φ 455×20:                  | 5×ψ228.6                 | φ 455×25                  | 5×ψ228.6                | φ 455×305× φ 228.6        |                         |  |
| Regulating wheel size<br>(dia×width×hole) | ψ 255×20.                  | 5×ψ111.2                 | φ 255×25                  | 5× ψ 111.2              | φ 255×305×111.2           |                         |  |
| Grinding wheel speed                      | 1500 R.P.M                 |                          |                           |                         |                           |                         |  |
| Regulating wheel speed                    | 13-316 R.P.M<br>(10 step)  | 10-250 R.P.M<br>stepless | 13-316 R.P.M<br>(10 step) | 10-250<br>R.P.Mstepless | 13-316 R.P.M<br>(10 step) | 10-250<br>R.P.Mstepless |  |
| Grinding wheel motor                      | 15HP                       |                          |                           |                         | 20HP                      |                         |  |
| Regulating wheel motor                    | 2HP*6P                     | 2.9KW<br>servo motor     | 2HP*6P                    | 2.9KW<br>servo motor    | 3HP*6P                    | 4.4KW<br>servo motor    |  |
| Hydraulic pump motor                      | 1HP                        |                          |                           |                         |                           |                         |  |
| Coolant pump motor                        | 1/4HP 1/2HP                |                          |                           |                         |                           |                         |  |
| Regulating wheel feed on handwheel        | 3.5mm(Rev)<br>0.05mm(Gra)  |                          |                           |                         |                           |                         |  |
| Regulating micro feed on handwheel        | 0.1mm(Rev)<br>0.001mm(Gra) |                          |                           |                         |                           |                         |  |

| MODELS                         | KCG-18 | KCG-18S                    | KCG-18A | KCG-18AS          | KCG-18B       | KCG-18B |
|--------------------------------|--------|----------------------------|---------|-------------------|---------------|---------|
| Table feed on handwheel        |        | 9mm(Rev)<br>0.05mm(Gra)    |         |                   |               |         |
| Table micro feed on handwheel  |        | 0.2mm(Rev)<br>0.001mm(Gra) |         |                   |               | 5       |
| Dressing handwheel             |        |                            |         | n(Rev)<br>nm(Gra) | $\mathcal{O}$ |         |
| Regulating wheel tilt angle    |        |                            | +5      | °~-3°             |               |         |
| Regulating wheel swivel angle  | ±5°    |                            |         |                   |               |         |
| Machine size (L×W×H)approx)    |        |                            | 2300×20 | 00×1530mm         | 1             |         |
| Net weight (approx)            | 280    | 0kgs                       | 290     | Okgs              | 300           | Okgs    |
| Shipping gross weight (approx) | 310    | 0kgs                       | 320     | Okgs              | 330           | 0kgs    |
| Packing size(L×W×H) (approx)   |        | X                          | 3200×14 | 00×1900mm         | 1             |         |
| Packing size(L×W×H) (approx)   |        |                            |         |                   |               |         |


## 2.3 KCG-20 series specification

| MODELS                                 | KCG-20 KCG-20S             |                          |  |  |
|----------------------------------------|----------------------------|--------------------------|--|--|
| Std work rest(dia)                     | $\phi 1 \sim \phi 50$ mm   |                          |  |  |
| Special work rest(dia)                 | ψ40~ψ                      | 100mm                    |  |  |
| Grinding wheel size(dia×width×hole)    | φ 510×20                   | 05×ψ254                  |  |  |
| Regulating wheel size (diaxwidthxhole) | φ 305×20                   | 05×φ127                  |  |  |
| Grinding wheel speed                   | 1350 R.P.M                 |                          |  |  |
| Regulating wheel speed                 | 13-316 R.P.M<br>(10 step)  | 10-250 R.P.M<br>stepless |  |  |
| Grinding wheel motor                   | 20HP                       |                          |  |  |
| Regulating wheel motor                 | 3HP*6P                     | 2.9KWservo motor         |  |  |
| Hydraulic pump motor                   | 1HP                        |                          |  |  |
| Coolant pump motor                     | 1/2HP                      |                          |  |  |
| Regulating wheel feed on handwheel     | 3.5mm(Rev)<br>0.05mm(Gra)  |                          |  |  |
| Regulating micro feed on handwheel     | 0.1mm(Rev)<br>0.001mm(Gra) |                          |  |  |
| Table feed on handwheel                | 9mm(Rev)<br>0.05mm(Gra)    |                          |  |  |


#### **2 MACHINE SPECIFICATION**

| MODELS                                 | KCG-20           | KCG-20S           |
|----------------------------------------|------------------|-------------------|
| TEMS                                   | KCG-20           | KCG-205           |
| Table micro feed on handwheel          |                  | n(Rev)<br>nm(Gra) |
| Dressing handwheel                     |                  | (Rev)<br>m(Gra)   |
| Regulating wheel tilt angle            | +5°-             | ~-3°              |
| Regulating wheel swivel angle          | ±5°              |                   |
| Machine size(L×W×H)(approx)            | 2300×2000×1530mm |                   |
| Net weight (approx)                    | 3200kgs          |                   |
| Shipping gross weight (approx) 3500kgs |                  |                   |
| Packingsize(L×W×H) (approx)            |                  | 0×1900mm          |
|                                        |                  |                   |

## 2.4 Machanism and part list







| -   | 1                                                  |     | _                                            |
|-----|----------------------------------------------------|-----|----------------------------------------------|
| 01. | Grinding wheel dresser                             | 20. | Electric box                                 |
| 02. | Grinding wheel dressing<br>emergency return handle | 21. | Leveling screw                               |
| 03. | Grinding wheel                                     | 22. | Dressingcontrol for grinding wheel           |
| 04. | Blade                                              | 23. | Workrest                                     |
| 05. | Regulating wheel fixed screw                       | 24. | Lower slider (worktable)                     |
| 06. | Nut for regulating wheel swivel angle              | 25. | Up slider                                    |
| 07. | Handle for grinding wheel feeding                  | 26. | Micro feeding handwheel for worktable        |
| 08. | Oiler                                              | 27. | Regulating wheel box                         |
| 09. | Feeding handwheel for worktable                    | 28. | Micro feeding handwheel for regulating wheel |
| 10. | Micro feeding handwheel for worktable              | 29. | Regulating wheel                             |
| 11. | Feeding handwheel for regulating wheel             | 30. | Grinding wheeloil lens                       |
| 12. | Coolant tank                                       | 31. | Hydraulic pump driving motor                 |
| 13. | Regulating wheel dresser                           | 32. | Regulating gear box                          |
| 14. | Regulating wheel dressing emergency return handle  |     |                                              |
| 15. | Regulating wheel dressing switch                   |     |                                              |
| 16. | Micro feeding handwheel for regulating wheel       |     |                                              |
| 17. | Nut for regulating wheel swivel angle              |     |                                              |
| 18. | Oil tank                                           |     |                                              |
| 19. | Grinding wheel driving motor                       |     |                                              |

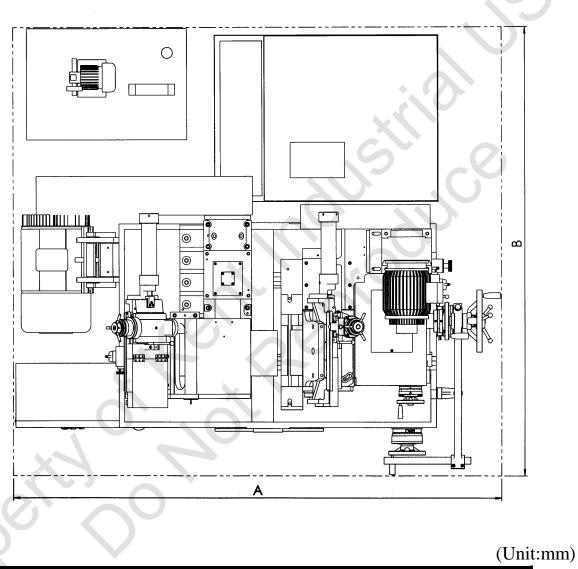
#### **2.5** Parts function

- 1) Grinding wheel dresser: dress grinding wheel.
- Grinding wheel dressing emergency return handle: avoid damage t ogrinding wheel by carelesness or human erros.
- 3) Grinding wheel: grinding workpiece.
- 4) Blade: Suppor t workpiece.
- 5) Regulating wheel fixed scrw: one on left and the other on right side to fix regulating wheel.
- 6) Nut for regulating wheel swivel angle: adjust the swivel angle of regulating wheel.
- 7) Handle for grinding wheel feeding: for infeed grinding.
- Oiler: forcing lubricator into slides, slide ways, alloy bearing of variousehandwheels and scrws
- Feeding handwheel for worktable: adjust the distance between the blade and grinding wheel.
- 10) Micro feeding handwheel for worktable: after positioning worktable, the handwheel is functioned.
- 11) Feeding handwheel for regulating wheel: adjust the distance between blade and regulating wheel.
- 12) Coolant tank: where to store coolant.
- 13) Regulating wheel dresser: dress regulating wheel. •
- 14) Regulating wheel dressing emergency return handle:avoid damage to regulating wheel by carelesness or human erros.
- 15) Regulating wheel dressing switch: control cylinder direction and speed.
- 16) Micro feeding handwheel for regulating wheel:after positioning, the

handwheel is functioned.

- 17) Nut for regulating wheel swivel angle: adjust the horizontal swivel angle of regulating wheel.
- 18) Oil tank: where tostoreoil.
- 19) Grinding wheel driving motor: grinding wheel rotating power source.
- 20) Electric box: controlling electricity and electric circuit
- 21) Leveling screw: adjust machine leveling
- 22) Dressingcontrol for grinding wheel: control the speed and direction.
- 23) Workrest: fix blade.
- 24) Lower slider (worktable): place for workrest
- 25) Up slider: adjust the level angle of rgulating wheel and upper feed moving surface.
- 26) Micro feeding handwheel for worktable: adjust the distance between workrest and grinding wheel slightly.
- 27) Regulating wheel box: fix regulating wheel housing.
- 28) Micro feeding handwheel for regulating wheel: ajust the distance between the regulating wheel and blade slightly
- 29) Regulating wheel: control feeding amount and rpm.
- 30) Grinding wheel oil lens: check the lubrication system of grinding wheel spindle is normal or not.
- 31) Hydraulic pump driving motor: suply oil to spindles and dressing units.
- 32) Regulating gear box: adjust regulating wheel speed(12BN.18.18A.18B.20 series)

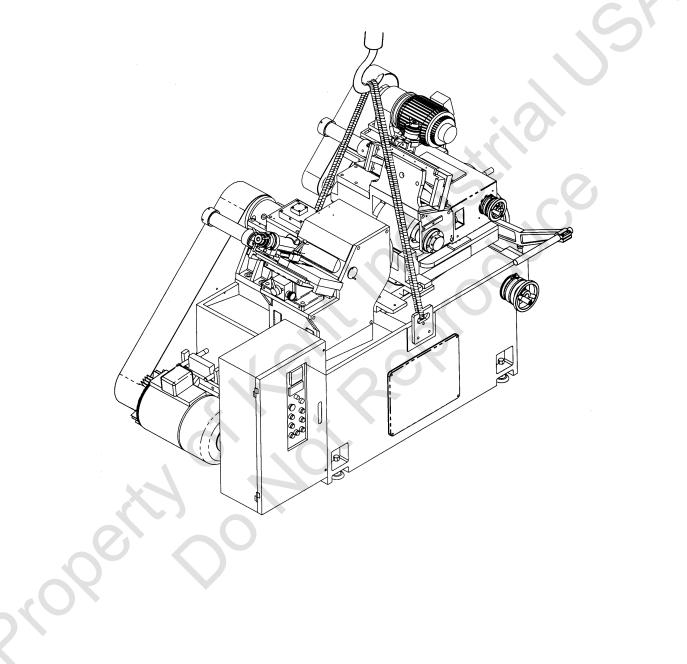
## 2.6 Standard accessories


|     | 1. Grinding wheel and flange                                           |
|-----|------------------------------------------------------------------------|
| -   | 1. Grinding wheel and flange                                           |
|     | 2. Regulating wheel and flange                                         |
| -   | 3. Thrufeedworkrest and blade                                          |
|     | 4. Infeedworkrest and blade                                            |
| -   | 5. Tool box and tool                                                   |
| VCC | 6. Working lamp                                                        |
| KCG | 7. Diamond dresser *2                                                  |
|     | 8. Thrufeed safety device                                              |
| -   | 9. Flange exatractor                                                   |
| -   | 10. Leveling screw and plate                                           |
| -   | 11. Thrufeed process gauge                                             |
|     | 12. Oil tank with pump                                                 |
| -   | 13. Water tank with pump (If order paper filter or hydrocyclone coolan |
|     | filtering unit, water tank is not attached.)                           |
|     | filtering unit, water tank is not attached. )                          |

## 2.7 Optional accessories

| MODE | <b>OPTIONAL ACCESSORIES</b>                             |
|------|---------------------------------------------------------|
|      | 1. Magnetic seperator                                   |
|      | 2. Paper filter                                         |
|      | 3. Hydrocyclonecooloont filtering unit                  |
|      | 4. Work ejector device                                  |
| KCG  | 5. Forming dressing device                              |
|      | 6. Long V-shaped support                                |
|      | 7. Manual parts feeder for infeed grinding              |
|      | 8. Automatic receiver for thrufeed grinding             |
|      | 9. Automatic thrufeed device                            |
|      | 10. Vibratory parts feeder                              |
|      | 11. Auto thrufeed taper grinding device                 |
|      | 12. Auto infeed forming grinding devive                 |
|      | 13. Wheel balancing arbor                               |
|      | 14. Wheel balancing base                                |
|      | 15. Off-line gauging, non-contact O.D. measuring system |
|      | 16. Grinding wheel automatic balancing system           |
|      | 17. Oil cooler                                          |
|      | 18. Rotary type grinding wheel dressing attachment      |
|      | 19. Jib crane and hook for grinding wheel               |
|      | 20. Grinding balancer for wheels                        |
|      | 21. Oil mist receiver                                   |

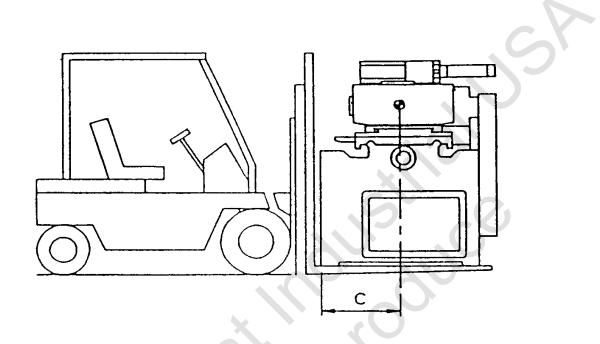
## 3. MACHINE LAYOUT


## **3.1 Floor space**



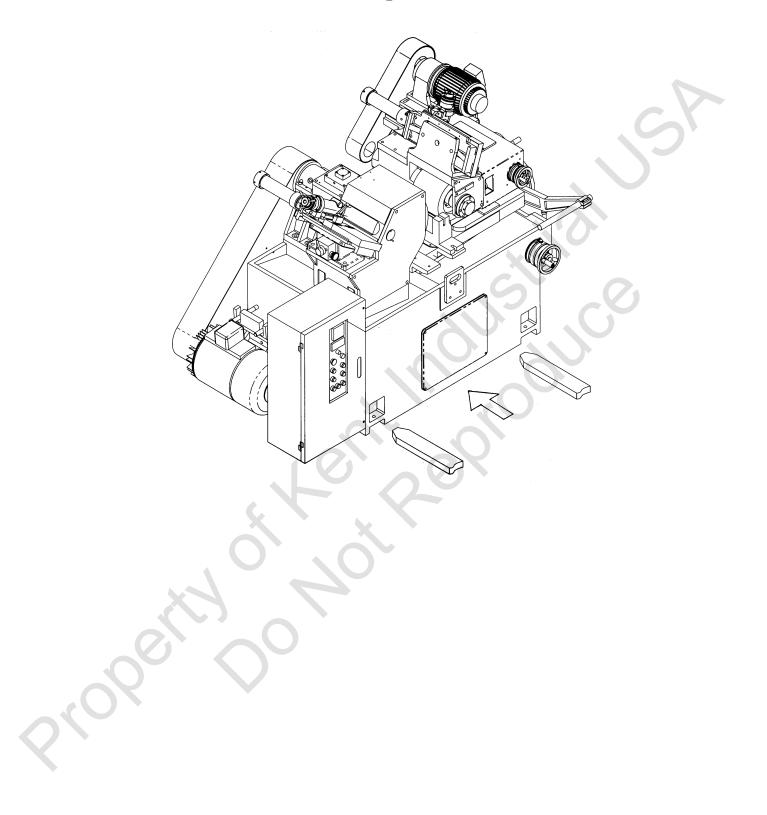
| MODEL | KCG-12 | KCG-18 | KCG-20 |
|-------|--------|--------|--------|
| А     | 1800   | 2300   | 2300   |
| В     | 1400   | 2000   | 2000   |

## 4. TRANSPORTATION & INSTALLATION


## 4.1 Lifting



## 4.2 Transportation

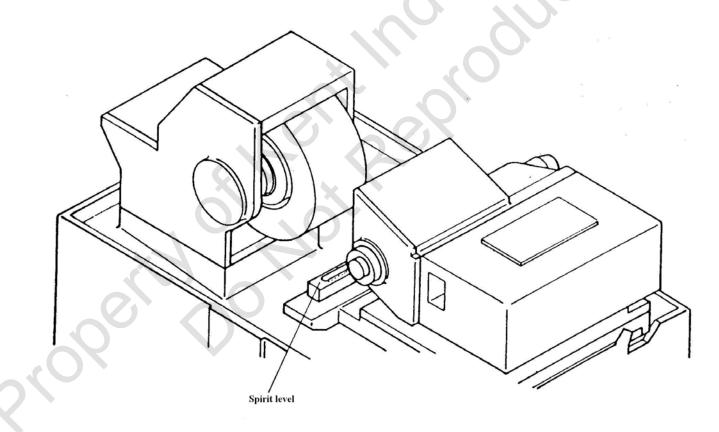

<

#### 4.2.1 Center-of-gravity position of forklift and machine



| Models | KCG-12 | KCG-18 | KCG-20 |
|--------|--------|--------|--------|
| C(mm)  | 325    | 460    |        |

#### **4.2.2** Position offorklift transportation




### 4.3 Foundation

The machine should be installed on rigid and plant floor. It's recommended to use concrete of at least 150mm thickness at the place installing the machine and to keep from source of vibration, such as punching or planer. It would be better to use vibration-isolated equipment at the foundation. This is especially important for high precision grinding machine.

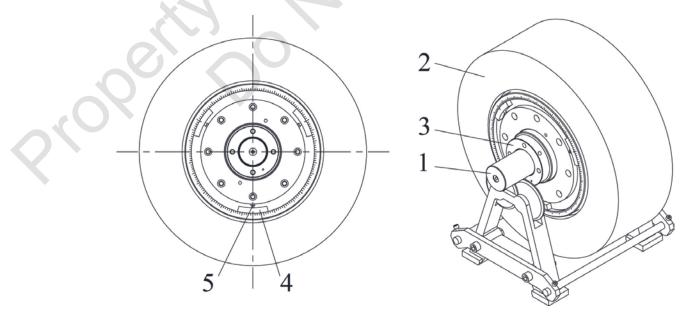
## 4.4 Leveling

The level of machine will be regulated after machine installed for 24 hours. The level precision of machine is subject to change by temperature and other factors. Hence, it should be re-leveling once a year to ensure its precision. Each graduation of level should be 0.02mm/m. Please do not apply wooden level owing to its low precision. In regulating, spirit level (see below) should be laid on worktable of lower slide so as to adjust machine's level and the surface of worktable. Must make sure worktable surface and the spirit level bottom is clear without dust before adjustment.



#### 4.5 Clean

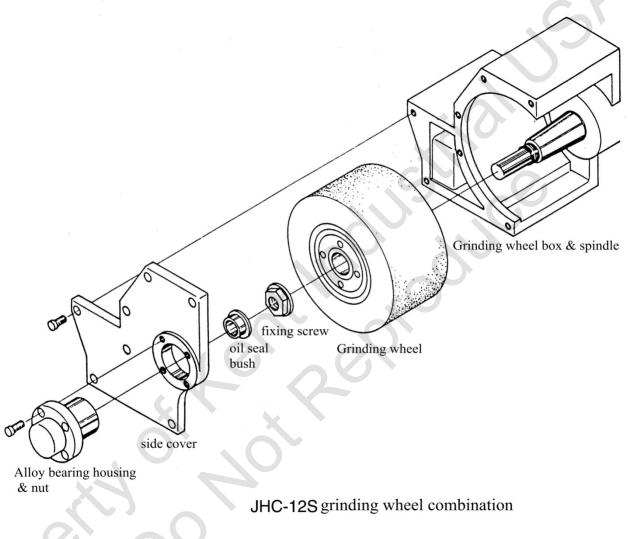
For shipment by ocean to user's factory, it has to use anti-rust oil spreading overall machine for protection. When take the plastic cover off machine. Please use soft cloth with kerosene to clean machine body and then put either oil or grease on parts which need to be lubricated before running the machine. Do not clean by gasoline and Vaseline water.

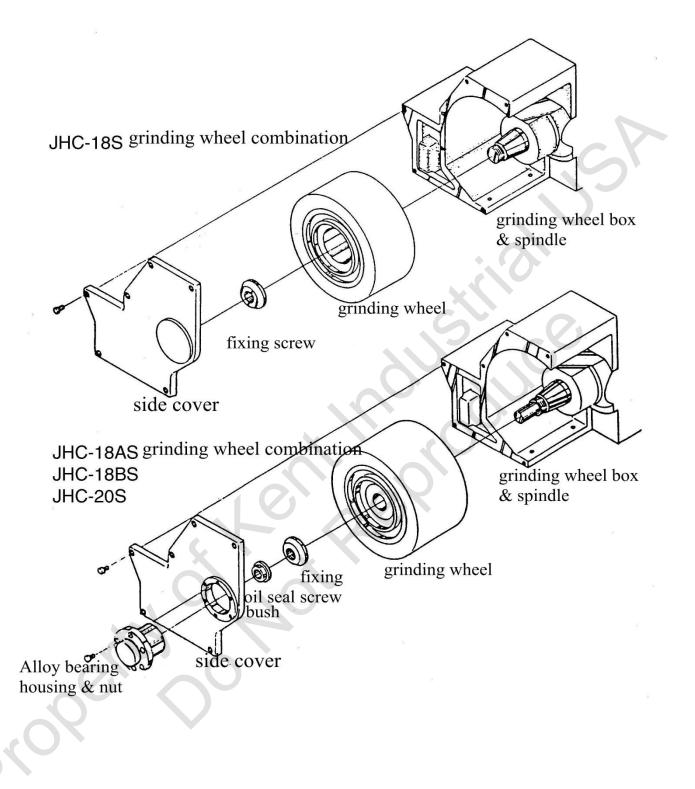

## 5. MECHANISM AND ADJUSTMENT

## **5.1** Balance of grinding wheel

Balance of grinding wheel is to obtain good smoothness and accuracy of workpiece after grinding and to keep machine in equilibrium condition. The mark caused by tremble appearing on the surface of workpiece is owing to vibration. This kind of deformation can be seen by eyes. Vibration often occurs when grinding wheel is not balanced which iscaused by deviation flange mounting on grinding wheel or obliquity between flange and spindle.

Grinding wheel balancing steps: (show as figure)

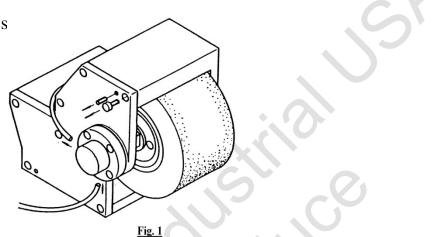

- 1. Mount the blancingarbor (1) into grinding wheel with flange (2) and lock it tightly with nuts (3) and place it on the balance base.
- 2. Rotate the grinding wheel by hand. When it stops, the bottom point is where with the most heavy weight. And then adjust weight blocks (4). Loosen fixing screw (5) while adjusting, move weight blocks (4) and fasten fixing screw (5).
- 3. By serveral times of adjustment, make the grinding wheel non-stop at the certain point means get balanced. To mount a new grinding wheel, first measure its balance in general and then balance is made after the surface of grinding wheel is completely corrected and dressed. It's no need to correct balance of regulating wheel because it rotates slowly.




## **5.2** Assemble and disassemble of grinding wheel

#### 5.2.1 Procedure

Show as figures: (base different models)



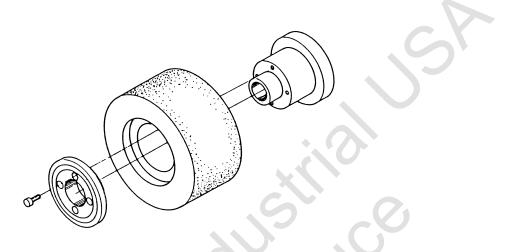



► KCG-12disassemble procedure


Step 1 (Fig. 1)

- 1. Seperate 2 oil pipes connect to alloy bearing housing.
- 2. Dismantle cover s



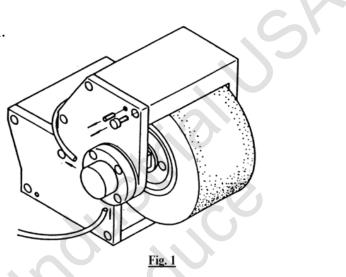

Step 2(Fig. 2)

- 1. Take out oilseal bush.
- Loose grinding wheel locked nut along with clockwise direction for 2-3 cycles by spanner (do not draw out completely)
- 3. Take out spanner and mount flange extractor, then keep rinding wheel away from main shft.
- 4. Take out flange extractor and draw out grinding wheel locked nut.
- 5. Dismantle grinding wheel slightly.



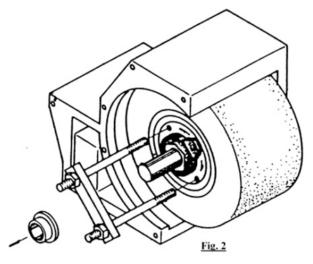
Step 3(Fig. 3)

- 1. Draw out screw on flange cover and seperate grinding wheel and flange.
- 2. Follow the above actions in reverse sequence to install back.



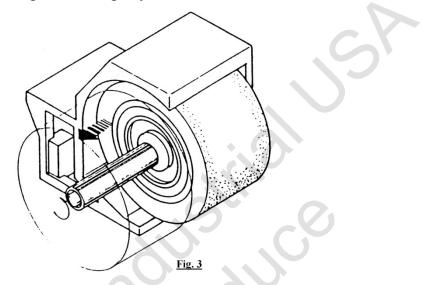

<u>Fig. 3</u>

► KCG-18disassemble procedure


Step 1(Fig. 1)

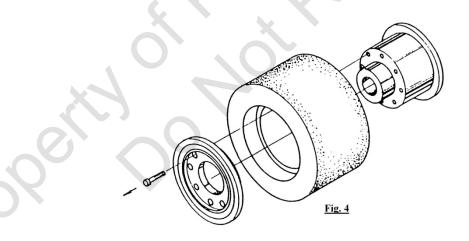
- 1. Seperate 2 oil pipes connect to alloy bearing housing.
- 2. Dismantle cover screw and pin.




Step 2(Fig. 2)

- 1. Take out oilseal bush.
- Loose grinding wheel locked nut along with clockwise direction for 2-3 cycles by spanner (do not draw out completely)
- Take out spanner and mount flange extractor, then keep rinding wheel away from main shft.
- 4. Take out flange extractor and draw out grinding wheel locked nut.




Step 3 (Fig. 3)

- 1. Mount grinding wheel loading and unloading tube.
- 2. Dismentle the grinding wheel slightly.



Step 4 (Fig. 4)

- 1. Draw out screw on flange cover and seperate grinding wheel and flange.
- 2. Follow the above actions in reverse sequence to install back.



#### 5.2.2 Tips:

- 1) All dismentaled parts should be cleaned and lubricated.
- 2) All assembled contact surfaces should be coated with grease.
- Parts between grinding wheel and flange should be coated with anti-rust grease or paved with a coat of tinfoil for the conveninece of disassembling next time.
- When install back alloy bearing housing, all bolts should be fixed by diagonal way.
- 5) Do not release bearing fixing nut.

### **5.3** Spindle correction

Upon replacing grinding wheel or regulating wheel, thedeflection of spindle must be corrected to ensure grinding precision. As below Fig. shown, place 1/1000mm gauge (1) on wroktable with gauge needle being leant against circumference of spindle with proper pressure where all contact surface msut be cleaned. Then, start grinding wheel or regulating wheel and read out variation from gauge. The maximum variation should not over 0.002mm. If it's over this value, slightly knock flange locked nut along with the variation by reverse direction. The action must be repeated for several times until varation is eliminated.

### **5.4** Grinding wheel dressing

The dressing of grinding wheel almost utilizes single diamond tool method. The size of diamond is subject to dress grinding wheel's diameter and binding degree, but commonly 500-600mm grinding wheel employs 1-2 carat of diamond tool. To avoid vibration when erecting, diaond tool should be completely fixed on feed shaft and the distance from its fixed part to the nose of it must be reduce as much as possible. Hydraulic driving way is appplied in dresing feed, with 0 to 300mm/min of range of continuing regulating structure. Rough grinding is in 200-250mm/min and finishing in 30-50mm/min feed speed where dressing is made. If there is large amount of heart generated owing to diamond tool when dresing, coolant must be added which will not only control temperature rising but also washes out impurities in sands. To dress feed amount, rought grinding is in 0.02mm and finishing is in 0.005-0.01mm where the last dressing is made but not feeding. To meet grinding condition and consider production efficiency, sometimes rotary dresser dress or bounded tool is adopted.

### 5.5 Assemble and disassemble of dresser

### 5.5.1 Procudure

As figures (Base different models)

- KCG-12 series dresser  $\triangleright$ combination
  - 1. Feeder
  - Feed spindle 2.
  - Hexgon socket fixed screw 3.
  - Diamond tool 4.
  - Hexgon socket fixed screw 5.
  - Feed spindle housing 6.
  - Hexagon socket bolt Locked bolt 7.
  - 8.
  - Locked sleeve 9.
  - 10. Locked nut

1a

10

6

#### Assemble and disassemble procedure:

- Loose locked nut (10) and slightly knock serveral times inward to make locked bolt (8) loss feed spindle (2).
- 2) Draw out Hexagon socket bolt (7).
- Release Hexgon socket fixed screw (5) and draw out feed spindle (2) through feeder (1).
- Draw out Hexgon socket fixed screw and dismantle worn diamond tool (4) and replace a new one. Then, lock hexgon socket fixed screw tightly.
- Assemble back base on above mentioned action in reverse sequence, replacement is finished.

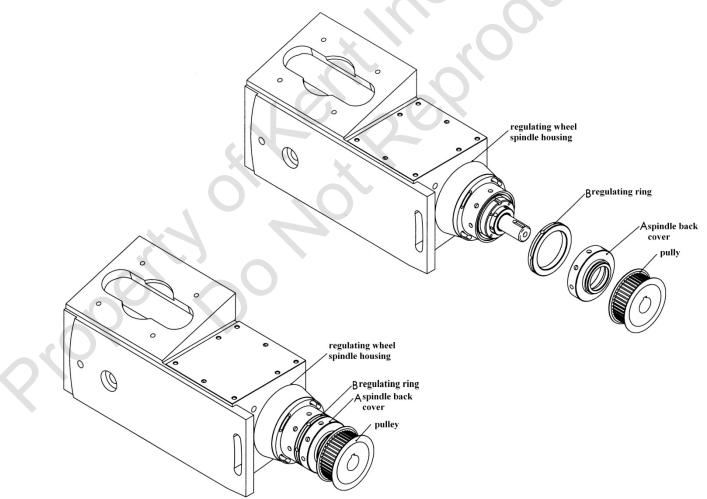
- KCG-18 series dresser combination
  - 1. Hexgon socket fixed bolt
  - 2. Feeder
  - 3. Feed spindle
  - 4. Hexagon socket fixed screw
  - 5. Diamond tool
  - 6. Feed spindle housing
  - 7. Hexagon socket bolt
  - 8. Locked bolt
  - 9. Locked sleeve

#### 10. Locked nut Assemble and disassemble procedure:

- Loose locked nut (10) andknockserval times inward to make locked bolt (8) to loose feed spindle (3).
- 2) Draw out hexagon socket bolt (7).
- Loose3 piece hexgon socket fixed bolt (1) and draw out feed spindle thourgh feeder.
- 4) Rease hexagon socket fixed screw (4) and dismental worn diamond tool (5) and replace new one. Then, lock hexgon socket fixed screw (4) tightly.
- Assemble back base on above mentioned action in reverse sequence, replacement is finished.

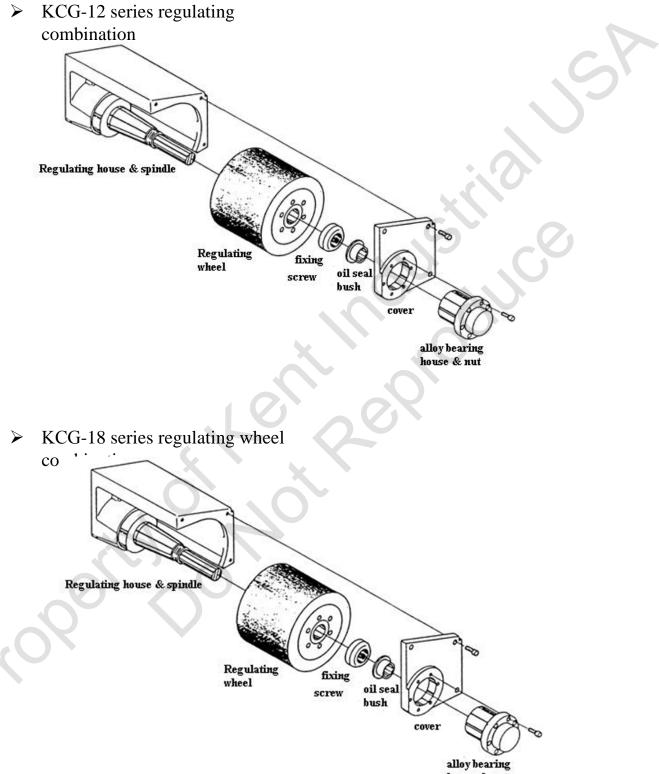
#### 5.5.2 Tips

- 1) Dismantled parts should be cleaned and lubricated.
- 2) Diamond dresser protruding length is about  $15 \sim 20$  mm.
- When install back hexgon socket fixed bolt (1), need to align the keyway of feeding axis.


### **5.6** Intoduction of regulating wheel

#### 5.6.1 Regulating wheel feed mechanism

When grinding wheel is fixed, the grinding of workpiece depends on the movement of regulating wheel slide. That is, the travel of regulating wheel slide and lower slide would regulate distances between regulating wheel, grinding wheel and blade. Lower slide and regulating wheel slide are respecively equipped with rough feed handwheel and micro feed handwheel (no micro feed device for regulating wheel slide of KCG-12S.) Micro feed is to lock worm shaft inside feed handwhee by outside nut. Generally, moving regulating wheel slide is to compensate worn size of regulating wheel spindle make±5° level swivel to grinding wheel spindle. The advantage is that cone occurred on workpiece can be regulated form level degree not by dressing grinding wheel.


#### 5.6.2 Spindle position adjustment of regulating wheel

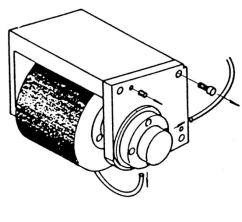
In thrufeed grinding, the vertical angle of regulating wheel can be inclined +5° to -3° which is adjusted base on feeding speed. While failing to line up grinding wheel owing to adjustment of vertical angle, you must line them up as below figure. First, loose end cover (A). Then, revolve locked screw (B) forward by clockwise direction and backward by conterclockwise direction (from standing at positiong screw). It might be jammed if not turning by hand. You may start regulate wheel driving motor to rotate regulating spindle. Then, press downpositiong screw to make spindle axial movement. Please do not rotate positioning screw by hand to prevent cutting.



#### 5.6.3 Assemble and disassemble of regulating wheel

1. Procedure (as below fig. shown):

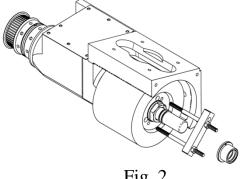



house & nut

- 2. Note:
- 1) All disassemble parts should be cleaned and lubricated.
- 2) All assembled contact surfaces should be coated with grease.
- Parts between regulating wheel and flange should be coated with anti-rusting grease or paved with a coat of tinfoil for the convenience of disassembling next time.
- 4) Do not loose alloy bearing fixing nut.
- 5) To install back alloy beawring house, all bolts should be screwed by diagonal way.

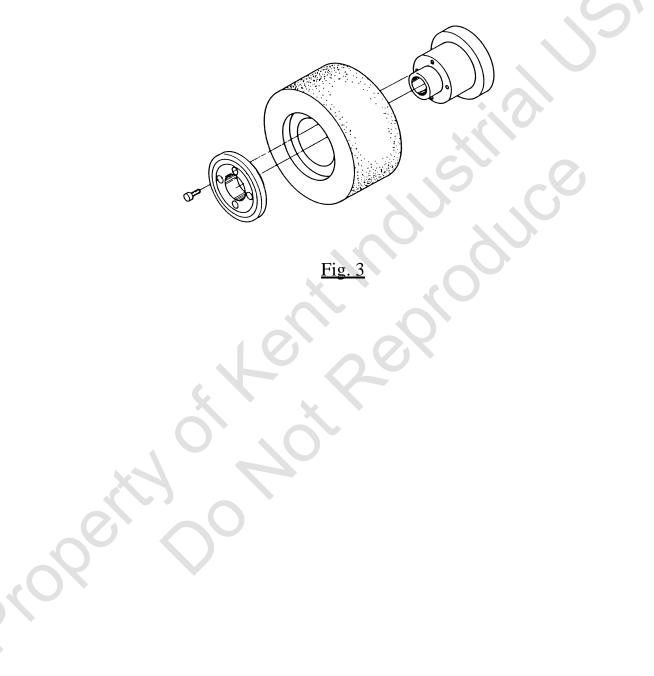
 KCG-12 series assemble and disassemble procudre

Step 1(Fig. 1)

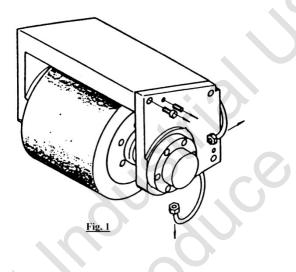

- 1. Separate 2 oil pipes connected to alloy bearing seat.
- 2. Dismantle end cover plate screw and positioning pin.





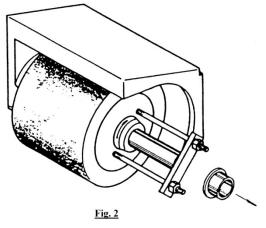

#### Step 2(Fig. 2)

- 1. Take out oil seal bush.
- 2. Loose 2-3 cycles of regulating wheel locked nut with clockwise direction by spanner. (Do not draw out completely)
- 3. Take out spanner and mount flange extractor. Then, keep regulating wheel away from spindle.
- 4. Take out flange extractor and draw out regulating wheel locked nut.
- 5. Dismantle regulating wheel slightly.



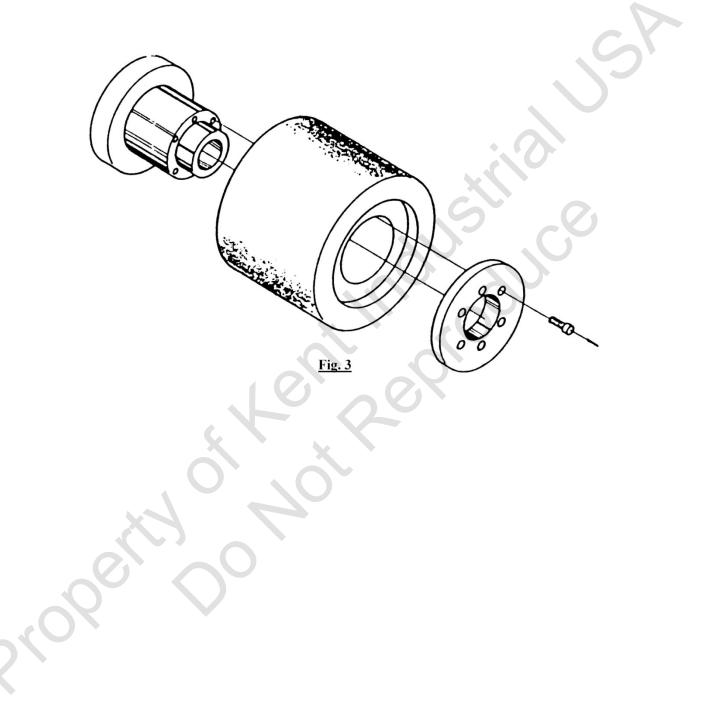

#### Step 3 (Fig. 3)

- 1. Draw out screw on flange cover from and seperate flange and regulating wheel.
- 2. To install back base on above mentioned action in reverse order.




- KCG-18 series assemble and disassemble procedure
   Step 1 (Fig. 1)
  - 1. Separate 2 oil pipes (1) from alloy bearing seat (2).
  - 2. Dismantle positiong pin (4) and fixing bolt (5), then, take out cover (6).




Step 2 (Fig. 2)

- 1. Take out oil seal bush.
- Loose 2-3 cycles of regulaing wheel locked nut with clockwise direction by spanner. (Do not draw out completely)
- 3. Take out spanner and mout flange extractor, Then, keep grinding wheel away from spindle.
- 4. Take out flange extractor and draw out regulating wheel locked nut.
- 5. Dismantle regulating wheel slightly.



Step 3 (Fig. 3)

- 1. Draw out screw on flange cover and separate flange and regulating wheel.
- 2. To install back base on to above mentioned action in reverse order.



#### 5.6.4 Speed of regulating wheel

The roating speed of regulating wheel range is from 10 to 300rpm, and dressing range is 300rpm. Grinding speed is subject to change by (1) the axial feed speedand the circumferential speed (2) of workpiece. Generally, grinding rotating speed of grinding range is from 20 to 40rpm. The axial feed speed can be shown by the following formula.

 $V = \pi DSin \theta N$ 

Where V= axial feed speed of workpiece, m/min

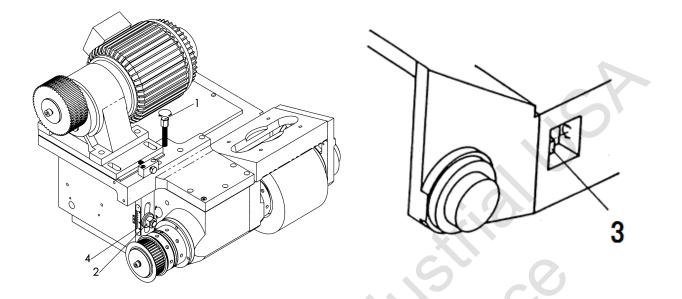
D=diameter of regulating wheel, mm

N=rotating speed of regulating wheel, rpm

 $\theta$  =slant angle of regulating wheel

Make above formula to project curve can render the following formula which represents relationship between the circumferential speed V of workpiece and the rotating speed of regulating wheel.

 $N = \frac{V}{\pi D} \quad V = circumferential speed, mm/min$  D = diameter of regulating wheel, mm


Usually, the slant angle for grinding is  $2 \sim 3^{\circ}$ , and the circuferential speed range of workpiece is from  $25 \sim 35$ m/min. Before machining, slant angle of workpiece is in a slight bending state should be expanded and feed speed must be accelerated. When turns out with good real circle, increasing rotating speed to obtain high precision. The axial feed speed workpiece is in direct proportion to regulating wheel .Hence, regulating wheel will lead to reduce feed speed, i.e. diameter of regulating wheel is reduce from 300mm to 250mm and the initial feed speed of 1.2m/min will be down to 1m/min. Gernerally, reduction on circumferential speed can be corrected gby

higher rotating speed. Although alter regulating wheel's slant angle may adjust workpiece axial feed speed. It's no recommended because correcton must be made up changing slant angle. Besides, be noticed that correction both on workpiece's circumferential aspeed and correcting grinding conditon.

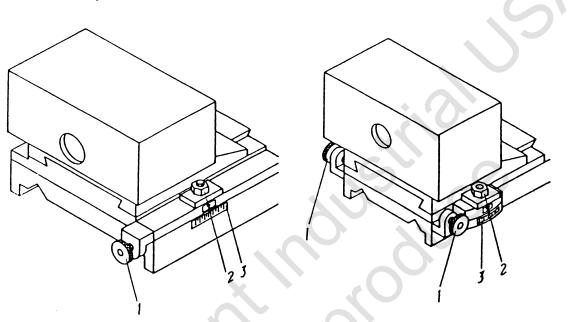
#### **5.6.5** Dress on regulating wheel

While dressing regulating wheel, the condition of diamond tool and coolant is similar to dress grinding wheel. However, the dressing rotating speed of regulating wheel is approximately 325rpm so in rough grinding, the dressing speed is 40 to 50 mm/min. As to the speed of finish grinding is similar to that of grinding wheel. Be careful the surface on regulating wheel after dressing will affect grinding surface of workpiece. The difference between regulating wheel and grinding wheel after dressing is that the later's shape is cylindrical and the former shape is like single piece and double curvature planes which is formed by slant angle of regulating wheeland swivel angleof dressing device. Generally speaking, in rough grinding, slant angle of regulating wheel is larger than that of dressing device by  $1.5^{\circ} \sim 2.5^{\circ}$ . In finishing grinding, it's around  $0.5^{\circ}$ .

#### 5.6.6 Slant angle adjustment of regulating wheel



1. Loose lock nuts (2) (3).

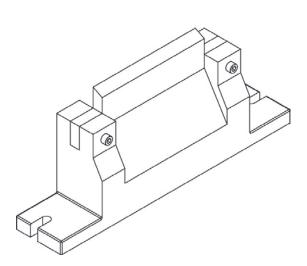

C

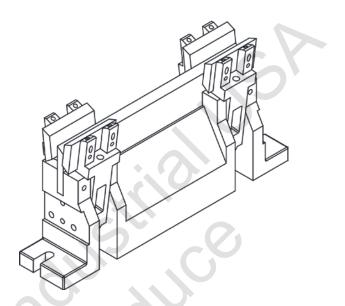
- 2. Rotate regulating bolt (1) to make regulating wheel slant transversely where slant scale can be shon from angle indicator (4).
- 3. Upon regulating to required angle, lock (2) and (3).

#### **5.6.7** Swivel angle of regulating wheel

- 1. Loose lock nuts (2) (both sides).
- 2. Rotate regulating handscrew (1) properly to swive regulating wheel

horizontally. •





Note: KCG-12 series have handscres each one for both sides. When adjusting, rotater right on one side and left turn is made on the other sidel. Upon positioning, you must rotate right for draw tight the left rotate.

- 3. Horizontal swivel angle can be shown by indcator (3).
- 4. After positioning, lock (2).

### 5.7 Workrestand blade support

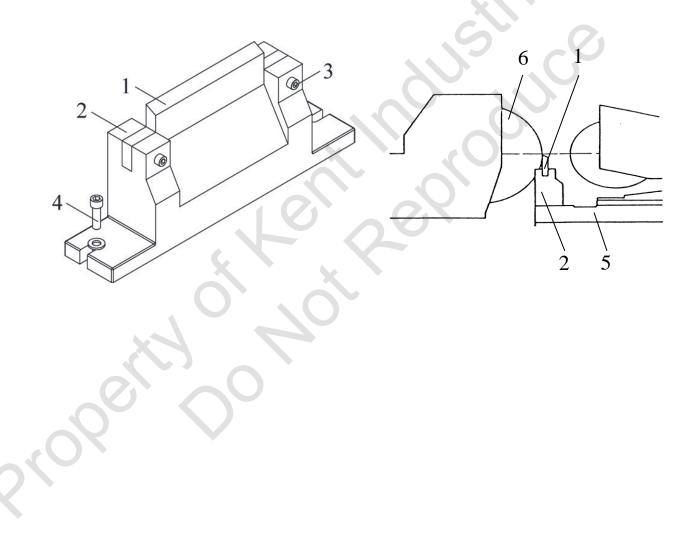
### 5.7.1 Workrest





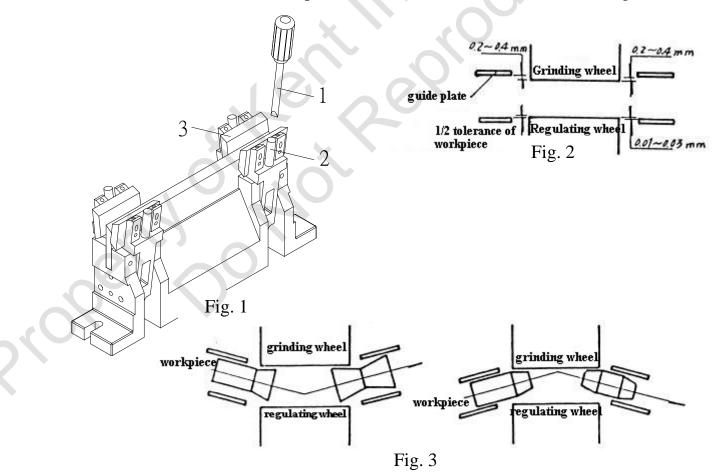
Infeed grinding workrest& blade

Thrufeed grinding workrest& blade


#### 5.7.2 Blade

The support blade in common is 60°. There is more wear in the part of frequenet contact on workpiece due to the load of grinding resistance. Gernerally, blade is welded with super-hard wolfram shell; sometimes high speed steel is used. The thickness of blade should be smaller than exernal diameter of workpiece. 1/2 to 1/6 of diameter of workpiece plus center height of grinding wheel or regulating wheel is the cener height of grinding piece. If the height of support blade is insufficient, packing plate should be used to achieve the required height. The thickness of support blade is shown on chart below.

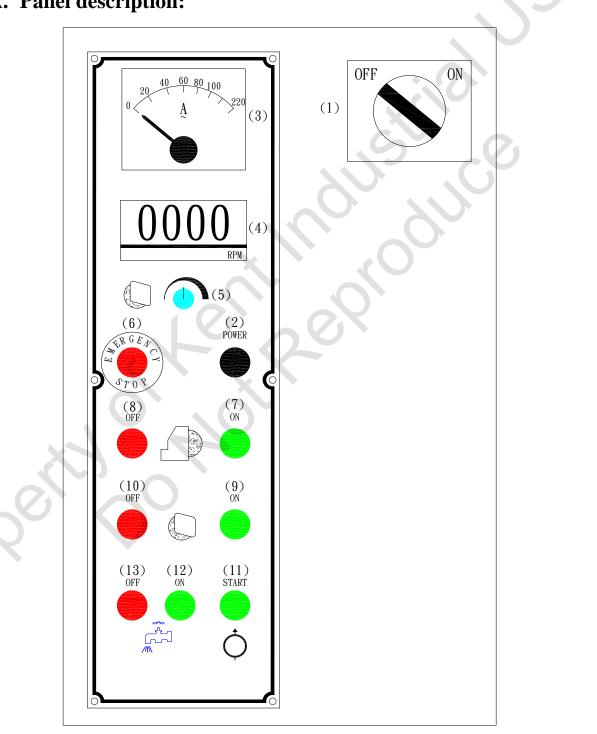
| Thickness of support blade (mm) | Diameter of workpiece<br>(mm) |
|---------------------------------|-------------------------------|
| 0.8                             | 1~2                           |
|                                 | 1.5 ~ 3                       |
| 2                               | 3 ~ 5                         |
| 3                               | 4 ~ 6                         |
| 4                               | 5 ~ 8                         |
| 5                               | 7 ~ 9                         |
| 6                               | 8 ~ 10                        |
| 8                               | 10 ~ 12                       |
| 10                              | 12 ~20                        |
| 13                              | 15 ~ 30                       |
| 15                              | 17 ~ 40                       |


#### 5.7.3 Ejection and adjustment workrest and blade

Put blade (1) intoworkrest(2) to a proper position. Lock fixed bolts (3) on two sides to fix blade (1). Place workrest on worktable (5), measure the required positon and turn feed handwheel in worktable (5) to move balde near grinding wheel (6). Adjust workrest (2) to make cutting edge (1) of blad being in parallel with the surface of grinding wheel (6), lockworkrest lock bolts (4) to fix workrest on worktable(5).



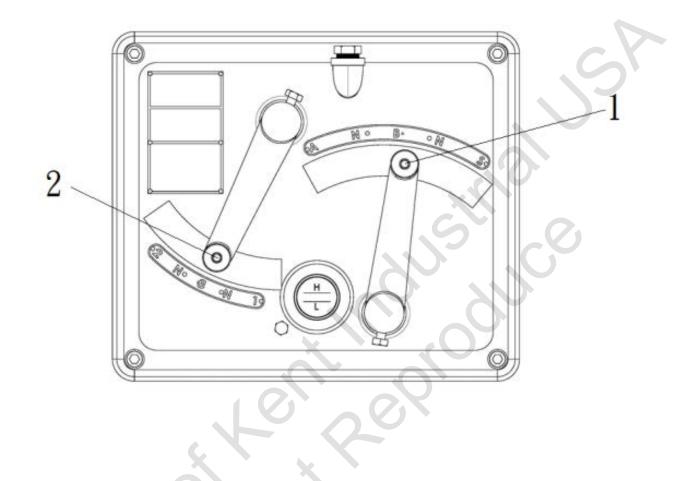
### 5.8 Adjustment of thrufeed guide plate


The regulation of thrufeed guide plate is show (fig. 1). Turn regulating screw (2) by screwdreiver (1) to make guide plate (3) close or open to match workpiecesize where regulating scale is shown on (fig. 1). The guide plate should be parallel to both grinding wheel and regulating wheel and the entry of regulating wheel's edge is 1/2 tolerance of workpiece. Theexit edge has the gap of 0.01 to 0.03mm and both entry and exit of grinding wheel's edge takes gap of 0.2 to 0.4mm (fig.2). The test method is to put afinish-grindedworkpieceto move from entry to exit back and forth to ensure that it is passed smoothly and moves in on direction. If guide plate and regulating wheel are not on the same line, workpiece will become concave or convex as fig. 3.



# 6. OPERATION

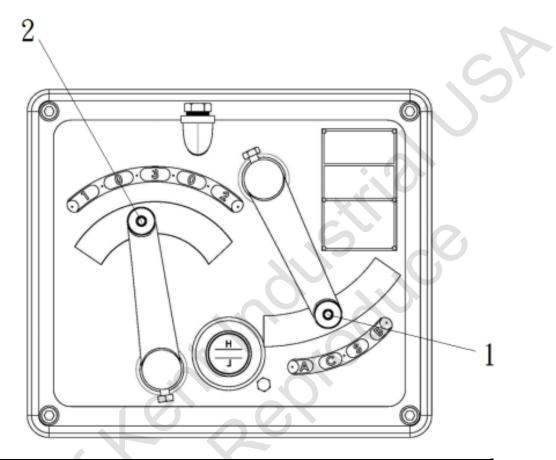
## 6.1 Operation key description


### A. Panel description:



### **Chart1 Operation key description**

| NO. | KEY                   | DESCRIPTION                                                                                                                                                  |
|-----|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | OFF ON                | Power switch:<br>ON: turn on power<br>OFF: turn off power                                                                                                    |
| 2   | POWER                 | Power on indicator                                                                                                                                           |
| 3   | 0 <u>A</u> <u>220</u> | Load current indicator:<br>When grinding wheel spindle starts and grinds, it<br>display the current of motor.                                                |
| 4   | 0000<br>RPM           | Regulating wheel spindle rotation number indicator                                                                                                           |
| 5   |                       | Regulating wheel rotation number control knob:<br>Turn the knob to choose required rotation number<br>of regulating wheel spindle                            |
| 6   | ST 0 P                | Emergency stop button:<br>Press the button to stop all machine operation<br>whileabnormal situationshappen.Turn the key<br>clockwisely to recover operation. |
| 7   | ON                    | Turn on switch of grinding wheel motor                                                                                                                       |
| 8   | OFF                   | Turn off switch of grinding wheel motor                                                                                                                      |
| 9   | ON                    | Turn on switch of regulating wheel motor                                                                                                                     |

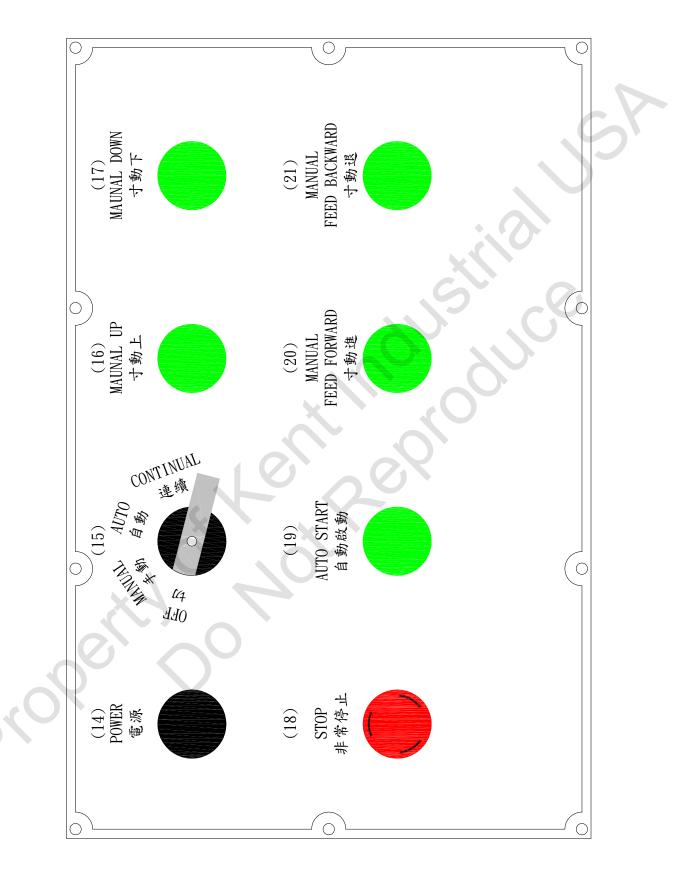

| NO. | KEY   | DESCRIPTION                               |
|-----|-------|-------------------------------------------|
| 10  | OFF   | Turn off switch of regulating wheel motor |
| 11  | START | Hydraulic start switch                    |
| 12  | ON    | Coolant start switch                      |
| 13  | OFF   | Coolant stop switch                       |
|     |       |                                           |



**Chart 2 KCG-12BN: regulating wheel tachometer** 

| regulating wheel tachometer |       |        |       |
|-----------------------------|-------|--------|-------|
| Handle                      | R.P.M | Handle | R.P.M |
| N-N                         | 0     | B-1    | 65    |
| A-1                         | 20    | B-2    | 96    |
| A-2                         | 32    | B-3    | 146   |
| A-3                         | 47    | S-N    | 337   |

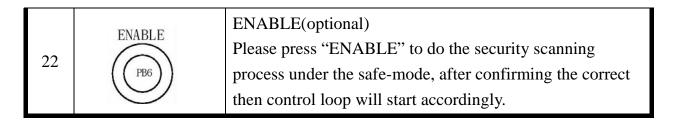
### Chart 3 KCG-18.18A.18B.KCG-20: regulating wheel tachometer




| regulating wheel tachometer |       |        |       |
|-----------------------------|-------|--------|-------|
| Handle                      | R.P.M | Handle | R.P.M |
| 1-A                         | 13    | 2-B    | 73    |
| 2-A                         | 21    | 2-C    | 97    |
| 3-A                         | 36    | 3-В    | 125   |
| 1-B                         | 45    | 3-C    | 168   |
| 1-C                         | 60    | 0-S    | 316   |

#### **Regulating wheel variable operation steps**

For example: tachometer A-1


- 1. Pull up handle (1) and move to A, then, insert and fix.
- 2. Pull up handle (2) and move to 1, then, insert and fix.
- 3. Other revolutions base on tachometer to coordinate rpm.



#### Auto-grinding operation panel description: (optional))

| NO. | KEY                                                            | DESCRIPTION                                                                                                                                                   |                                                                |
|-----|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 14  | POWER<br>電源                                                    |                                                                                                                                                               | Power on indicator                                             |
|     |                                                                | OFF                                                                                                                                                           | Off mode selectoin                                             |
|     |                                                                | MANUAL                                                                                                                                                        | Operate robot arm to elevate and lower slide feeding manually. |
| 15  | HINUL AUTO<br>新聞意思<br>答:4 ···································· | AUTO                                                                                                                                                          | Press AUTO START to do once atuo-grinding cycle.               |
|     |                                                                | CONTINUAL                                                                                                                                                     | Press AUTO START to do continual auto-grinding cycle.          |
| 16  | MAUNAL UP<br>寸動上                                               | MODE-MANUAL: control robot arm to rise manually                                                                                                               |                                                                |
| 17  | MAUNAL DOWN<br>す動下                                             | MODE-MANUAL: control robot arm to drop manually                                                                                                               |                                                                |
| 18  | STOP<br>非常停止                                                   | Emergency stop button:<br>Press the button to stop all machine operation while<br>abnormal situationshappen.Turn the key clockwisely to<br>recover operation. |                                                                |
| 19  | AUTO START<br>自動啟動                                             | Auto start: to do once or continual auto-grinding cycle.                                                                                                      |                                                                |
| 20  | MANUAL<br>FEED FORWARD<br>寸動進                                  | MODE-MANUAL: move lower slide forward manually                                                                                                                |                                                                |
| 21  | MANUAL<br>FEED BACKWARD<br>す動退                                 | MODE-MANUAL: move lower slide backward manually                                                                                                               |                                                                |

### **Chart 4 Auto-grinding operation panel key descriptions**



### 6.2 Machine switch off procedure

#### 6.2.1 Operaton panel

- 1. Turn the switch (1) of electric box door ON.
- 2. Emergency stop switch (6) is pushed.
- 3. Release emergency stop switch (6) and POWER indicator (2) lights on.
- 4. Push STARTswitch (11) to start hydaulic pump motor and hydraulic actuation system begins.
- 5. Push grinding wheel motor start switch ON (7) and grinding wheel starts to run.
- When grinding wheel is running, the motor load curreent indicator (3) displays loaidng current (A).
- 7. Push grinding wheel spindle stop switch to stop running.
- 8. Push regulating wheel spindle motor start switch ON(9) and regulating wheel spindle begins.
- Turn regulating wheel rotation number control knob(5) to choose required rotating speed of regulating spindle. Regulating wheel spindle rotation number indicator displays the rotation number.
- 10. Press turn off switch of regulating wheel spindle OFF (10) to stop.
- 11. Press the coolant start switchON (12) to spray.
- 12. Press the coolant start switchOFF (13) to stop.

Note:

The procedure for stop regulating wheel rotation of KCG-12BN.18.18A.18B.20 is as below.

- Base on the steps of regulating wheel gear box tachometer to choose rotation number.
- 2. Press regulating wheel motor start switch ON (9) to start regulating wheel spindle.

#### 6.2.2 Auto griding operation panel

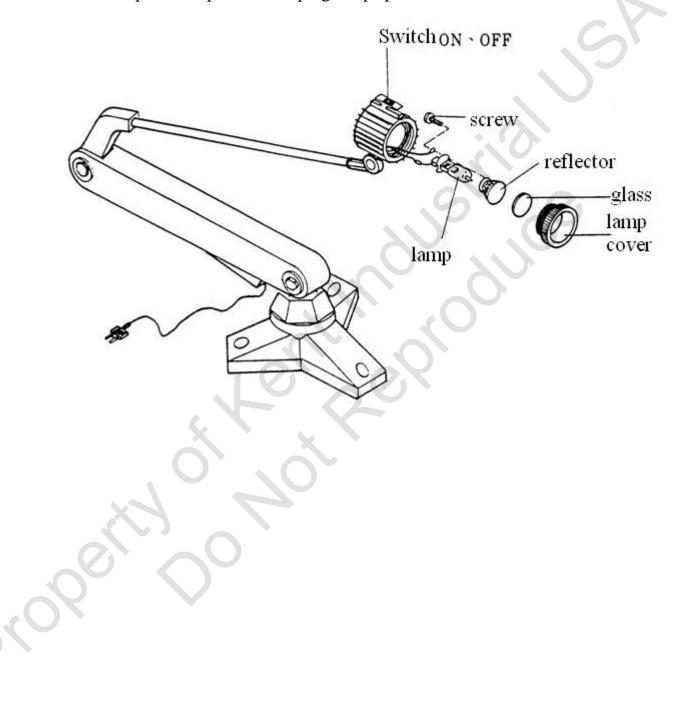
- Release emergency stop switch (6) and release stop switch (18), POWER indicator (18) lights up.
- Turn model choice knob (15) to choose AUTO and press AUTO START switch (19) to precede once auto grinidngcyle. Choose CONTINUAL to procede continual auto grinding cycle.
- 3. Turn model chose knob (15) to choose MANUAL, and press MANUAL UP botton (16) to raise robot arm. Press MANUAL DOWNbutton (17) to drop robot arm. Press MANUAL FEED FORWARDbutton (20) to move lower slide forward. Press MANUAL FEED BACKWARDbutton (21) to move lower slide backward.
- 4. Turn model chose knob (15) to be OFF, robot arm and auto feeding axis return to reference point.

#### 6.2.3 Switch of proximal regulating wheel motor

1. Set the grinding terminal by regulating wheel motor switch (22) which locates under auto feeding knob.Press green button is to start regulating spindle. Press red button is to stop regulating wheel.

# 6.3 Machine switch off procedure

- Turn mode selection knob to be OFF and use operation key to stop coolant and regulating wheel.
- 2. Dry run the grinding wheel about 5 minutes to dry water fuly.
- 3. Switch off griding wheel.
- 4. Press EMERGENCY STOP button.
- 5. Turn off power switch in the electric box and finish shutdown procedure.


## 6.4 Cable connection and trial run

Connect auto lubrication motor, coolant motor and power. The green cable of four core cable is grounding wire. Machine, coolant storage tank and oil tank should be grounded to prevent operators get electric shock when electric leakage happens. Buttons in electric box have interlock function. Press auto lubrication switch at firtst, the rest bottons are effective. Start coolant after grinding wheel is turn on. Press full stop switch (red bulk button) to stop all device. Follow the arrow direction to make the button come out and other keys are effective to restart. After power supply is connected well, test the steering of auto lubricaton motor and grinding wheel at first. If no pressure as 6 of hydrulic circuit after turning on auto lubrication motor, need to turn onstop valve(5) in advance. If grinding wheel rotates CCW, need to change any 2 power lines of auto lubrication motor. (Do not change grinding wheel motor wiring because grinding wheel, regulating wheel and motor have been connected to the same rotating direction during assemblely.) After taht, test diretion of coolant pump. The method is turn on coolant and turn off immediately and check the direction same as the indicator or not. There is a timer switch in electric box to control auto lubrication pump off delay after pressing full stop switch to keep lubricating until grinding wheel stop completely.

Turn off coolant 2 to 3 minutes before pressing full stop switch to throw out coolant on grinding wheel surface and prevent absorbing by grinding wheel to damage the balance.

# 6.5 Working lamp replacement

Unscrew the cover in advance and take out, then, release screw of reflector and take out to replace lamp. The workping lamp specification is 12V \$ 55W.



# 6.6 Regulating wheel servo motor parameter list

| PARAMETER<br>NO. | DE                             | FINITION                                       | UNIT        | SETTING | REMARK             |
|------------------|--------------------------------|------------------------------------------------|-------------|---------|--------------------|
| Pn000.0          | Basic Servo motor<br>rotationg |                                                |             | 0       | S                  |
| Pn000.1          | function                       | Direction                                      |             | 0       |                    |
| Pn000.2          | selection<br>switch            | Spindle position                               |             | 0       |                    |
| Pn000.3          | switch                         | Spare                                          |             | 0       |                    |
| Pn001.0          |                                | WehnSERVO<br>OFF, motor stop<br>mode selection |             | 2       | 0                  |
| Pn001.1          | Basic<br>function              | Overtravel stop mode                           |             | 0       | Stop freely        |
| Pn001.2          | switch                         | witch AC/DC power input selection              |             | 0       |                    |
| Pn001.3          |                                | Warning code<br>output selection               |             | 0       |                    |
| Pn201            | PG dividing                    | ; ratio                                        | Plus/rev    | 5000    |                    |
|                  | \$                             |                                                | 0.01V/      | 787     | KCG-12serires      |
| Pn300            | Speed comr                     | nend input gain                                | Rated speed | 950     | KCG-18/20/24series |
| Pn305            | Soft start ac                  | celeration time                                | Ms          | 3000    |                    |
| Pn306            | Soft start de                  | eceleration time                               | ms          | 3000    |                    |
| Pn50A.0          | O,                             | Input signal<br>configuration<br>mode          |             | 0       | SIO                |
| Pn50A.1          | Input<br>signal                | /S-ON signal formed                            |             | 7       | Effective signal   |
| Pn50A.2          | selection1                     | /P-CON signal formed                           |             | 1       | SI1                |
| Pn50A.3          |                                | P-OT signal formed                             |             | 8       | Signal invalid     |

| Pn50B.0  |                           | N-OT signal                                     |      | С    | SI3               |
|----------|---------------------------|-------------------------------------------------|------|------|-------------------|
| 11000.0  |                           | formed                                          |      | C    | 515               |
| Pn50B.1  | Tarant                    | /ALM-RST                                        |      | 4    | SI4               |
| FIIJOD.1 | Input                     | signal formed                                   |      | 4    | 514               |
| Pn50B.2  | signal selection1         | /P-CL signal                                    |      | 5    | SI5               |
| Ph50B.2  | selection                 | formed                                          |      | 5    |                   |
| Pn50B.3  |                           | /N-CL signal                                    |      | 6    | SI6               |
| F1150D.5 |                           | formed                                          |      | 0    | 510               |
| Pn600    | The power of the external |                                                 | 10W  | 30   | KCG-12 series     |
| 1 11000  | regenerative resistor     |                                                 | 10 W | - 50 | KCO-12 selles     |
| Pn600    | The power                 | The power of the external                       |      | 30   | KCG-18/20 series  |
| FIIOUU   | regenerative resistor     |                                                 | 10W  | 50   | KCU-10/20 series  |
| Pn600    | The power                 | The power of the external regenerative resistor |      | 40   |                   |
| 1 11000  | regenerative              |                                                 |      | 40   | KCG-18BS/24series |

Colle Colle

# 7. MAINTENANCE & REPAIR

# 7.1 Notes of maintenance & repair

- 1) Prevent using non-appinted, unknown quality and source oil.
- 2) Clean and mainten machine and turn off machine power (power switch on electric box door) after duty off.
- Maintein machine after machine stops completely or pwer is shutdown to prevent danger happens.

# 7.2 Period

| ITEM                                              | CYCLE          | CONTENT                                                                                 |
|---------------------------------------------------|----------------|-----------------------------------------------------------------------------------------|
| Oil volume and pressure of rinding wheel oil tank | Each<br>day    | Oil volume should be within scale table and pressure should be 8~10kg/cm <sup>2</sup> . |
| Oil volume of manual oiltank                      | Each<br>day    | Oil volume should be within scale table.                                                |
| Coolant volume                                    | Each<br>day    | Maintain coolant volume above half.                                                     |
| Grinding wheel spindle belt tension               | Each<br>week   | Check if within the tension.                                                            |
| Regulating wheel spindlebelt tension.             | Each<br>week   | Check if within the tension.                                                            |
| Formed diamond dresserbelt tension                | Each<br>week   | Check if within the tension.                                                            |
| Water tank                                        | Each<br>week   | Renew base on coolant quality and accuracy requirement.                                 |
| Filter cleanness                                  | Each<br>week   | Include oil cooler and air conditioning filters of electric box                         |
| Wheel head filter can                             | Each<br>season | Check and clean                                                                         |
| External hydraulic box and filter                 | Each season    | Check and clean                                                                         |
| Wheel head oil tank                               | Half<br>year   | $1^{st}$ oil renew for new machin is 3 months, after that every half year.              |
|                                                   |                |                                                                                         |

# 7.3 Monthly check list

| Descript                                 | Item                                         |  |  |
|------------------------------------------|----------------------------------------------|--|--|
|                                          | 1. Rust or damage on two spindles            |  |  |
|                                          | 2. Safety on protector cover or not          |  |  |
|                                          | 3. Rust or damage on the joint face          |  |  |
|                                          | 4. Damage on oil scraper or not              |  |  |
| Appearance                               | 5. Damage or not on pipe and connector       |  |  |
|                                          | 6. Damage on the Sprayer or not              |  |  |
|                                          | 7. Machine works well or not                 |  |  |
|                                          | 8. Clear on the gauge and indication sign    |  |  |
|                                          | 1. Damage or not on switch cover             |  |  |
|                                          | 2. Coolant mist or dust in to the box        |  |  |
|                                          | 3. Damage or not on the switch connect point |  |  |
|                                          | 4. The fuses are regular                     |  |  |
|                                          | 5. Ground wire has connected                 |  |  |
|                                          | 6. Isolation or not on the wires             |  |  |
|                                          | 7. Wire connected loosen or not              |  |  |
| Electricity device                       | 8. Damage on wire protector fuse or not      |  |  |
| , O                                      | 9. Switch function work well or not          |  |  |
| X                                        | 10. Each indication light work well or not   |  |  |
|                                          | 11. The galvanometer work well or not        |  |  |
|                                          | 12. The dynamo work well or not              |  |  |
| $\sim$ $\sim$                            | 13. The magnetic contactor work well or not  |  |  |
|                                          | 14. The lamp work well or not                |  |  |
| Lubrication, hydraulic oil<br>and device | 1. Amount of oil                             |  |  |
|                                          | 2. Deteriorate or not on the lubrication oil |  |  |
|                                          | 3. Properly on lubrication area or not       |  |  |
|                                          | 4. Oil cup work well or not                  |  |  |
|                                          | 5. Amount of oil inside the tank             |  |  |

| Descript                   | Item                                                   |  |  |  |
|----------------------------|--------------------------------------------------------|--|--|--|
|                            | 6. Change oil regularly                                |  |  |  |
|                            | 7. The pressure is normal                              |  |  |  |
|                            | 8. Vibration or not on the pressure gauge              |  |  |  |
| Lubrication, hydraulic oil | 9. Leaking or not on cylinder                          |  |  |  |
| and device                 | 10. Leaking from pipe connector, switch or not         |  |  |  |
|                            | 11. Filter work well or not                            |  |  |  |
|                            | 12. Vibration, abnormal heat on the magnetic contactor |  |  |  |
|                            | 1. Pump work well or not                               |  |  |  |
| Cooler device              | 2. Separator plate, filter work well or not            |  |  |  |
|                            | 3. Leaking from connector or switch pipe or not        |  |  |  |
|                            | 1. Vibration, abnormal noise or not                    |  |  |  |
| Grinding wheel spindle     | 2. Abnormal heat from spindle bearing                  |  |  |  |
|                            | 3. Properly on belt suspending or not                  |  |  |  |
| Dec. lefter the left 1     | 1. Vibration, abnormal noise or not                    |  |  |  |
| Regulating wheel spindle   | 2. Properly on belt suspending or not                  |  |  |  |

# 7.4 Oil-based maintenance

1) Poor quality of hydraulic oil affects machine a lot, please renew oil

immedaitely.

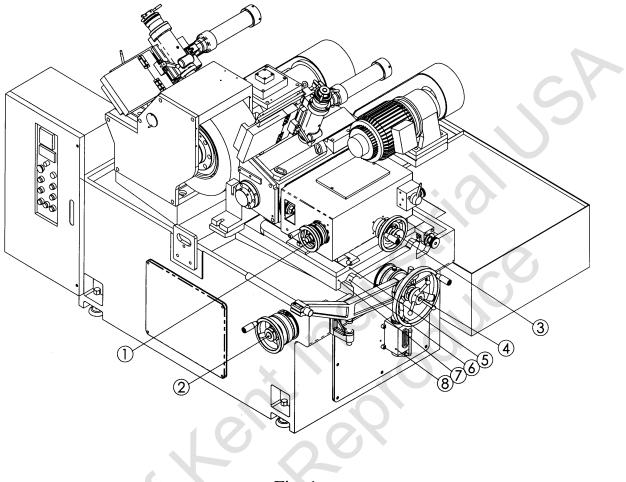
2) All filter of pump suction side must keep clean and smooth and maintain periodically.

- 3) Main reason for leaking is poor gasket, please replace new one at any time.
- 4) Open cavities of hydraulic circuit to exclude air to prevent noise and vibration.

# 7.5 Lubrication system

#### 7.5.1 Lubricator

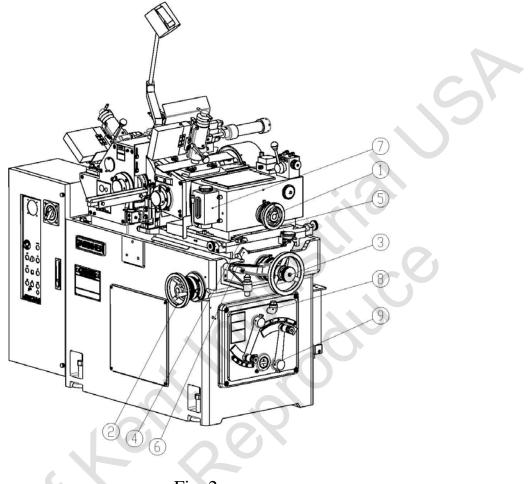
Whetehr the use of lubricator is correct or the cycle of lubricator incresement (or change oil) issame as the chart influence machine life and accuracy. Hence, please purchase lubricator form reliable oil supplier in accordance with the chart shown below. Depending on convenience and safety transportation, emptite lubricator of both grinding wheel spindle and regulating wheel spindle before shipping. In this way, oil tank must be filled with oil before working; otherwise both bearing and spindle will be damaged. The other sliding aprts must be lubricated as indicated. But oil in transmission box hasn't been revmoved. Please do not add oil ever H line. Otherwise there will be too much oil as show below. Oil of the same grade form other brand is also available. Lubrication (change oil) cycle is based on the period of 8 hours for each work day.


| CYCLE                                                                                    | LUBRICATION                                                                                                  | OIL CAPACITY                                                   | SPECIFICA                                                                    | REMARK                                                                                                                            |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|                                                                                          | PARTS                                                                                                        |                                                                | TION                                                                         |                                                                                                                                   |
| New machine<br>1st:3 months<br>2 <sup>nd</sup> : 6 months<br>3 <sup>rd</sup> : 12 months | Oil tank( grinding<br>wheel spindle,<br>regulating wheel<br>spindle,<br>auto-lubrication and<br>dressing oil | KCG-12Sappro<br>x 15 gallon,<br>KCG-18S.20S<br>about 25 gallon | Gulf brand<br>special<br>spindle oil<br>R-12 or<br>ESSO<br>SPINESSO.10.<br>° | Check<br>onceeveryhalf<br>month.If lower<br>than 80mm from<br>surface of barrelf,<br>oil must be added<br>to requrked<br>position |
| 1 <sup>st</sup> : 100H                                                                   | Regulating wheel                                                                                             | Increace to                                                    | Gulf                                                                         | Lower than oil                                                                                                                    |
| afterwards, every                                                                        | servo motor reducer                                                                                          | center line of oil                                             | brandHD-220                                                                  | level meter, need                                                                                                                 |
| 500H.                                                                                    | (12S.18.S.20S)                                                                                               | level meter                                                    | Esso EP-220                                                                  | to refill.                                                                                                                        |
|                                                                                          |                                                                                                              |                                                                | C.P.CAdvance                                                                 |                                                                                                                                   |
| 1 <sup>st</sup> : 100H                                                                   | Regulating wheel                                                                                             | Increace to                                                    | d gear                                                                       | Lower than oil                                                                                                                    |
| afterwards, every                                                                        | gear box                                                                                                     | center line of oil                                             | oil#90.140.                                                                  | level meter, need                                                                                                                 |
| 500H.                                                                                    | (12BN.18.18A.18B.20)                                                                                         | level meter                                                    | Gear oil ST                                                                  | to refill.                                                                                                                        |
|                                                                                          |                                                                                                              |                                                                | (Esso)                                                                       |                                                                                                                                   |
| Each month                                                                               | Dressing device feed<br>screw<br>(fig. 2)                                                                    | Appropriate<br>amount                                          | Gulf brand<br>special cycle<br>engine oil R-<br>68.                          |                                                                                                                                   |
| Each day                                                                                 | Auto oil filter<br>(fig. 1)                                                                                  | Appropriate<br>amount                                          | Gulf brand<br>special cycle<br>engine oil R-<br>68.                          | Pull oil filter<br>knob several<br>times                                                                                          |
| Each day                                                                                 | Level angle<br>adjustment seat<br>bearing                                                                    | Several drops                                                  | Gulf brand<br>special cycle<br>engine oil R-<br>68.                          |                                                                                                                                   |
| Each day                                                                                 | Dresser (fig. 2)                                                                                             | Appropriate<br>amount                                          | Gulf brand<br>special cycle<br>engine oil<br>R-68.                           |                                                                                                                                   |

# Chart 7-1 machine lubricator

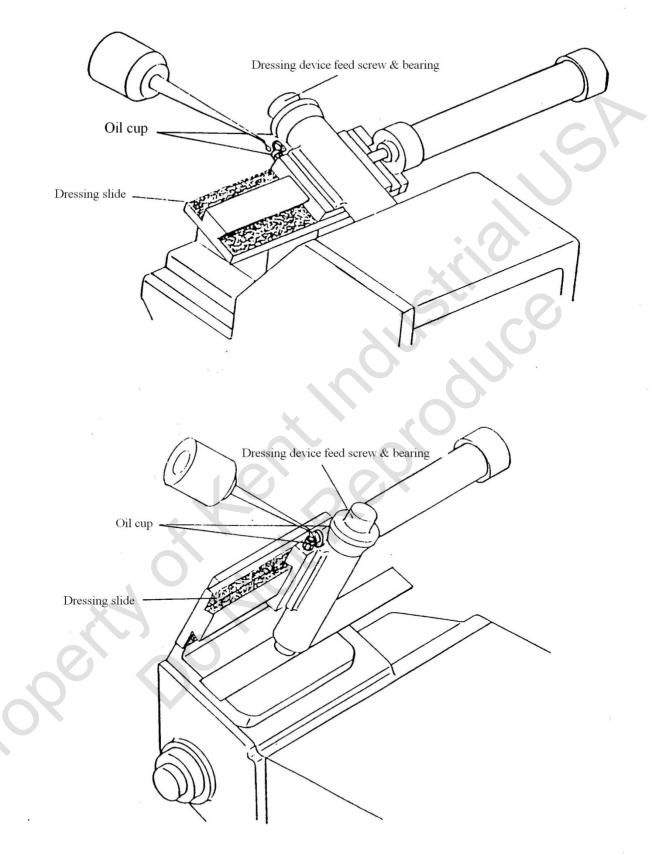
Remark:

- 1. Oil of the same grade from other brand is available also.
- 2. Increase (change) oil cycle is based on the period of 8 hours per day.


#### 7.5.2 Lubrication parts (12S.18S.20Sseries)



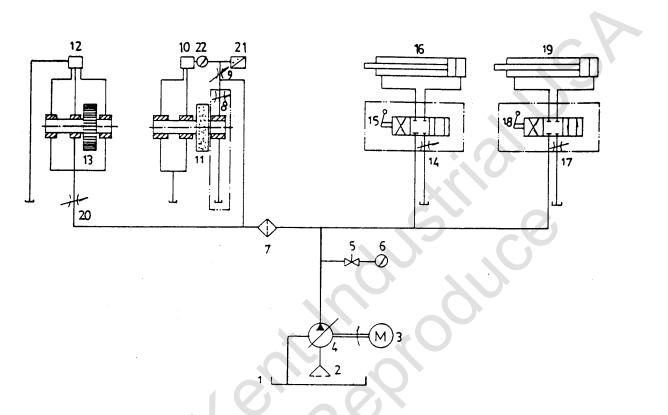



- 1. Regulating wheel micro feed bearing
- 2. Worktable micro feed bearing
- 3. Regulating wheel feed bearing and screw
- 4. Worktable feed bearing and screw
- 5. Rail of slide
- 6. Plane of revolution on lower slide
- 7. Rail of lower slide
- 8. Inlet of oiler

#### 7.5.3 Lubrication parts (12BN.18.18A.18B.20 series)





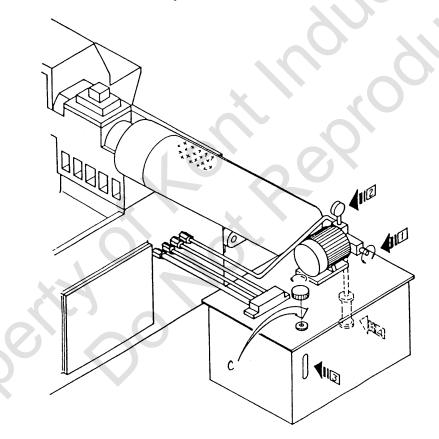

- 1. Regulating wheel micro feed beawring and screw
- 2. Worktable micro feed bearing
- 3. Worktable feed bearing and screw
- 4. Rail of slide
- 5. Plane of revolution on lower slide
- 6. Rail of lower slide
- 7. Inlet of oiler
- 8. Oil port of regulating wheel gear box
- 9. Drain port of regulating wheel gear box





# 7.6 Hydraulic system

# 7.6.1 Hydraulic circuit




# <u>(I) Parts list</u>

| NO | ITEM                                                        | NO | ITEM                      | NO | ITEM                   |
|----|-------------------------------------------------------------|----|---------------------------|----|------------------------|
| 1  | Oil tank                                                    | 9  | Flow control valve        | 17 | Flow control valve     |
| 2  | Filter (3/4")                                               | 10 | Grinding oil lens         | 18 | Direction change lever |
| 3  | Motor                                                       | 11 | Grinding wheel            | 19 | Dressing oil cylinder  |
| 4  | Hydraulic pump                                              | 12 | Regulating wheel oil lens | 20 | Flow control valve     |
| 5  | Stop valve                                                  | 13 | Regulating wheel          | 21 | Pressure switch        |
| 6  | Pressure gage                                               | 14 | Flow control valve        | 22 | Pressure gage          |
| 7  | Filter (1/2")                                               | 15 | Direction change<br>lever |    |                        |
| 8  | Flow control valve<br>(KCG-18 series has<br>no the device ) | 16 | Dressing oil<br>cylinder  |    |                        |

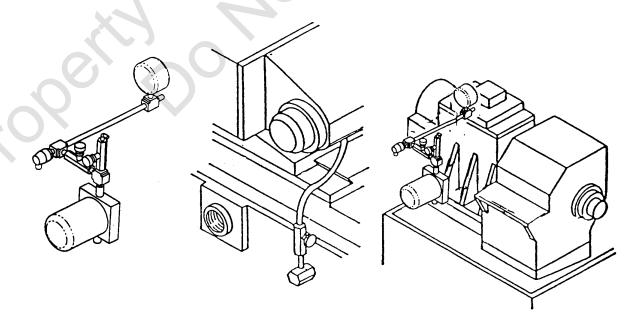
#### 7.6.2 Hydraulic pressure adjustment

Auto lubricaton and hydraulic dressing devices for grinding wheel spindle and regulating wheel spindle are used with same pump. Generally, oil pressure should be kept at 8-10kg / cm<sup>2</sup>. If pressure is higher than capacity of oilseal, oil will leak. If pressure is too low, oil cylinder shaft of dresser will vibrate while moving. When filter is clogged by impurities, oil pressure will decrease. In this condition, take out filter and clean it. If oil pressure is still low, open cap of oil pressure regulator and adjust screws. The pressure increase by clockwise direction and decrease by counterclockwise directin.



|   | NO | ITME                          | NO | ITEM           | NO | ITEM   |
|---|----|-------------------------------|----|----------------|----|--------|
| ſ | С  | Oii port                      | 2  | Pressure gauge | 4  | Filter |
|   | 1  | Pressure<br>regulating scre w | 3  | Oil gauge      |    |        |

#### 7.6.3 Flow adjustment


Flow control valve is to regulate oil capacity into grinding wheel spindle and regulating wheel spindle and to keep normal oil pressure and capacity so that lubrication and cooling system may obtain high efficiency. The adjusting way is to follow mark direction on hand screw, turn right is to reduce flow and turn left is to increase flow. The amount of flow control valve can be seen form oil lens. Flow control valve position, pressure switch function and setting:

Pressure switch is to cut off power connection automatically and stop the grinding wheel to protect the alloy beawring among gridning wheel in case of the

pressure lower than indication set on the gauge.

Setting:

- 1. Start the machine and turn on the grindng wheel spindle
- 2. Rotate adjusting screws above pressure switch to make the pressure over 1kg / cm<sup>2</sup>.
- 3. Clockwise direction adjusting the flow valve when the value on indciator from  $3 \text{kg} / \text{cm}^2$  goes down to  $1 \text{kg} / \text{cm}^2$ , the grinding wheel motor will stop. If not stop at  $1 \text{kg} / \text{cm}^2$ , need to adjust again to make sure the motor will stop when pressure at  $1 \text{kg} / \text{cm}^2$ .
- 4. Set the pressure of flow valve to be  $3 \text{kg} / \text{cm}^2$ .



# 7.7 Coolant selection

Coolant is to get flush grits of binding agent and chips from both grinding wheel and regulating wheel quickly. It can cool workpiece, reduce friction between workpiece and grinding wheel and enhance surface glazing on workpiece. Coolant flows from tank through pump to machine, then back to coolant tank and flow through some deposit tanks to get rid of sands, bonding agent and chips to recycle. Hence, a great amount of mud-like things is deposited in reservoir. In this case, it's better to change coolant frequently. Otherwise, grinding glazing and accuracy wil be affected and pump iseasily damaged. Magnetic coolant sperator or filter device can get rid of great amount of grinding chips that extends coolant change period.

There are varioud types of coolant, please choose the proper type.

- 1. Water-solubility coolant
- 1) Emulsifying series coolant

With mineral oil as the element liquid, fatty acid soap, petroleum resin soap,tea acid soap, petroleum, sulfur soap  $5 \sim 20\%$ ) of negative iron active agent as teh emulsifier, mix further with alcohol, fatty acid grease as binding agent. Generally, it's diluted by water 20 to 50 times before use. It appears like milk. The advantage of this series is good lubrication but its cooling and permiability are less good.

2) Transparent and emulsifying coolant

With little oil but more emulsifier, when coolant is diluted to 70-100 times, oilis dispersed to the corpuscles nearly as transparent body, whose cooling

and permeability are less good.

3) Transparent water-solubility coolant

Mainly with chemical treatment chrome acid sodium such as inorganic ammonium, dissolves into water and apears transparent which develops anti-solubility and resst prevention with good grinding effect. It's suitable for cast iron and cast steel.

2. Non water-solubility grinding liquid

Mainly with light mineral oil, mixes with sulfur fatty oil or chlorine sulfurfatty oil which has good lubrication including active and inactive. If added with sulfur, chlorine such as extreme pressure additives, it can effectively reduce grits worn and torn and prevent grinding wheel's holes from being clogged, which may reduce heating. Hence, this is suitable for precisin grinding and better for aluminum workpiece. Be ware of its inflammability and hygiene.

3. Water

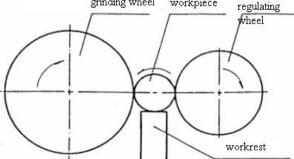
Water is good for cooling but lessgood for lubrication. It may cause rest formetalworkpieces. Underspecial conditions, it's used for grinding in porcelain and glass fiber but do not apply the used-water. The used grinding liquidshould be treated according to general standard industrial wastewater treatment, such as chemical treatment (by acid-base treating method) or burned ash in order to avoid water pollution.

# 8. TROUBLE SHOOTING

# 8.1 Common cause & remedy

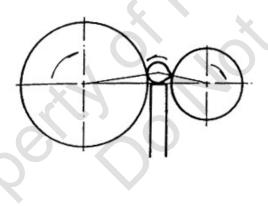
| ABNORMAL                         | CAUSE                                                                                       | REMEDY                                       |  |
|----------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------|--|
|                                  | 1. Lack of power supply.                                                                    | Check power                                  |  |
| Turn on power,                   | 2. No fuse switch (NFB) off.                                                                | Turn NFB to ON                               |  |
| power indicator no               | 3. Power lamp isn't bright.                                                                 | Repair power lamp.                           |  |
| light.                           | 4. NFB is poor quality.                                                                     | Replace NFB                                  |  |
|                                  | 5. Transformer burned                                                                       | Renew transformer                            |  |
|                                  | 1. Button switches poor contact.                                                            | Repair or renew.                             |  |
| Complete turn on                 | 2. Wire failing or poor contact.                                                            | Tight fixing screw.                          |  |
| process, hydraulic               | 3. Overload relay and cut off.                                                              | Press RESET button.                          |  |
| pump isn't<br>wroking.           | 4.Electromagnetic switch is poorcontact.                                                    | Replace new parts.                           |  |
|                                  | 5. Motor is burned.                                                                         | Repair or replace new parts.                 |  |
| Grinding wheel can't be started. | Hydraulic pressure is too low.                                                              | Adjust hydraulic pressure to required range. |  |
|                                  | 1. Overload relay and cut off.                                                              | Press RESET button.                          |  |
| Grinding wheel                   | 2. The pressure is to low to work.<br>Filter is stuck and micro moton<br>switch is invalid. | Adjust pressure, clean filter and renew.     |  |
| spindle motor isn't              | 3. Hydraulic pump lose function.                                                            | Repair or renew.                             |  |
| moving.                          | 4. Oil pump rotates but lubricator isn't lubricated.                                        | Repair or replace new oil pump.              |  |
|                                  | 5. Turn ON pressure switch but mtor can't start.                                            | Repair or renew.                             |  |
|                                  | 6. Motor is burned.                                                                         | Repair or renw.                              |  |
|                                  | 1. Overload relay and cut off.                                                              | Press Rest button                            |  |
| Coolant isn't<br>flown.          | 2.Electrimagnetic switch is poorcontact.                                                    | Replace a new one.                           |  |
|                                  | 3. Coolant switch is off.                                                                   | Turn on coolant switch.                      |  |

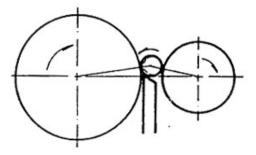
|                    | 4.Pump impeller is worn out.                  | Replace new parts.                                     |  |
|--------------------|-----------------------------------------------|--------------------------------------------------------|--|
|                    | 5. Motor is bun.                              | Replace new parts.                                     |  |
|                    | 1. Oil level is too low.                      | Add appointed or same specification oil.               |  |
| Hydraulic pump     | 2.Pump inlet pipe is stuck.                   | Check filter and pipe is stuck by obstructions or not. |  |
| oil is not output. | 3.Oil viscosity is too high.                  | Check used oil matches oil regulation or not.          |  |
|                    | 4. Oil pump unit is broken.                   | Replace unit by engineer base on regulation.           |  |
|                    | 1.Inlet pipe is air in.                       | Sink inlet pipe into oil tank indeed.                  |  |
|                    | 2. Too much air inside system.                | Exclude air out of the system indeed.                  |  |
|                    | 3. Too much impurities stuck filter.          | Maintain base on period.                               |  |
| Oil pump noise     | 4. Oil pipe is stuck.                         | Remove impurities inside oil pipe.                     |  |
|                    | 5. Oil pump unit is broken.                   | Replace by engineer base on regulaton.                 |  |
|                    | 6.Oil viscosity is too high.                  | Follow oil usage regulation.                           |  |
|                    | 7.Pump shaft and the motor shaft misalignment | Re-install.                                            |  |
| Belt noise         | 1. Belt is loosening.                         | Adjust motor seat to moderate tightening the belt.     |  |
|                    | 2. Belt is deformed.                          | Replace belt.                                          |  |


*5.*(

# 9. GRINDING APPLICATION

# 9.1 Centerlessgrinding principle


Centerless grinding means no need to clamp workpiece for griding. The grindingmethod is as figure shown. It's consisting of grinding wheel, regulating wheel and work rest. Grinding wheel is used for grinding, regulating wheel for controling rotation workpieces and enable its rotation to be teh same as feed speeed. The workrest is used t osupportworkpiece in girnding. There is other smilar ways for the collaboration of these parts. Other methods are teh same in principle, except tangential feed grinding.


In the same way as cyindrical grinding, grinding is made by shortening the gap between center of workpieceand surfaceof grinding wheel. Thus,workrest and regulating whel are to support, center and rotate workpiece. The turning direction of grinding wheel is reverse to the regulating wheel. The workpiece is pressed against workrest and regulating whel in the grinding wheel process. The turning speed of workpiece is made to be the same as that of regulating wheel. The drive is carried out by friction between regulating wheel and wrokpiece. Real circle is formed by the above three element's arrangement. First assuming that the workpieces's center height is the same as that of the grinding and regulating wheels thus the out of round part on circumference of workpiecepressng directly opposite place on geometir of two grinding wheel will from a concave.



A circle with equial diameters after repeating the action mentioned above is formed

but it is not a real circle, its a triangle-like or quadrangle like-circle. If workpiece is put on the highter place than connecting line between centers of two griding wheels, when bevel point on workpiece contacts regulating wheel , the point pressing against grinding wheel doesn't symmetrize it. Furthermore, skew poit contacts work rest. The other parts on workpiece don't touch the two griding wheels. In this way, diameter of finshedworkpiece is longer than diameter got from above mentioned assumptive state; only skew point is ground and coming out a nearly real circle through grinding. In fact real circle is enhanced by support blade which is formed an angle on top of workrest as point and line in fig. shown when lower part on surface of workpiece contacts regulating wheel or blade cetner of circle on workpiece will descend. Its ground diameter is shortere when center of circle ascends its ground diameter is longer which resulting in a real circle because the uneven parts on workpiece offset each other. Besides workpiece is easily upward severed because of higher angular velocit or too high of center on workpiece.





#### 9.2 Centerless grinding method

#### 9.2.1 Thrufeed method

Grinding is made by passing workpiece through two grinding wheels meanwhile. Regulating wheel is made to an inlcination fora applying its component of velocity in cirucumferentical speed. To guide workrpiece to the correct grinding position, four guide plates are placed in front of and rear of blade. Pay attention on correction of regulating wheel and thanworpiece in line contact with regulatin wheel owing to inclinaton of regulating wheel. Only incline regulating wheel, workpiece touches regulating wheel on one point. Hence, regulating must be corrected to dram-line and its corrected device is placed according to the inclinaton. This method is only suitable for cylindrical workpiece and few different diameters of workpiece, such as rod, bar, piston pin, needle, bearing retainer and pipe etc. To go on rough grinding and finishing at tehsametime, serveral sets of grinding machines are made to a grindig engineering line. Bar feeder, part feeder, ring feeder and hopper elevator are available to heighten work efficiency.

### 9.2.2 Infeed method

The grinding method is firstly, workpiece is sent from two sides or top of two grinding wheels into the required position, then, move regulating wheel forward to grind which is a kind of radial feed method, suitable for complicated conical workpiece machining. To ensure operators' safety in inserting workpiece, commonly workpiece is placed on the grinding position by machine, and operators only putworkpiece to the convey device. Besides, the work processof now commonly operated, such as insert, take out, metering grinding wheel and correction of regulating wheel, compensation to worn grinding wheel, the auto machines and tools are employed including conical roller, roller, enginevevalve,spinder, crank shaft and rear accelerating box etc.

#### 9.2.3 Endfeed method

Make 2 grinding to be cone shap. Ensure grinding wheels and workrest are fixed and insert workpiecefron grinding wheel side untio touches stopper. This grinidng method is only fit cone surface machining.

#### 9.2.4 Tangential feed method

Maintain the backlash of grinding wheel and regulating wheel and push the workpiece forward according to grinding wheel cutting line.

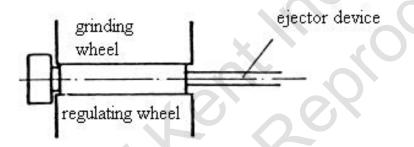
## 9.3 Grinding method for different workpiece

There is a wide selection of shapeds on workpieces for centerless grinding. Here aresome samples and popular grinding methods.

#### 9.3.1 Short circle workpiece

If no other cause, generally by thrufeed grinding, especially for auto feeder with economical efficiecency (short and small workpiece the best) Continuous feeding workpiece in thrufeedgridning is important as size variation can occur with interitting feeding.

#### 9.3.2 Disc-plateworkpiece


The ratio between dia. Of cylinder and its length (R/L) is above 1 that is diaofworkpiece larger than its length. Workpiece must be kept in a fixed pose. Some workpieces must be for fixed grinding by using special fitting. Movement occurs in grinding, just place upper disc between two wheels.

#### 9.3.3 Long bar workpiece

In long bar grinding, V-shaped way for feeding can be equipped in fronotthemachien and V-shaped way for discharge mounted at the reatr of the machine. In this method, it's very difficult to centralize by moving the regulating wheel which has to be clime due the grinding wheel. Furthermore, since fixed worn wheels must be respectively dressed and compensated. Therefore, if the workpiece is not tool long, it is better to mount the V-shaped way on workrest, then, centralize in the normal method.

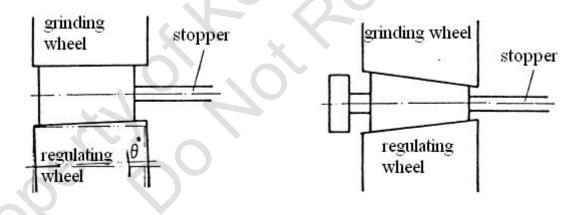
#### 9.3.4 Attache-head workpiece

Infeed grinding method is employed when the external diameter of grinding part is smaller than head part. When its center of gravity is on the grinding part, workpece is sent into nearly-contact positon between bid head end face and two wheel's end face for feeding and grinding. When discharge, it can be taken out by hands. If sent out by electro-magnetism or oil pressure, quicker speed can be made. If center of gravity feel is on the head part, a device for supporting grinding piece should be used. The head can't be supported owing to irregular shape, a upper disc should be mounted on the top of grinding aprt from where to regulate its balance for grinding. Please refer to below figure.



#### 9.3.5 Cross-shape workpiece

For cross-shape workpieces, such as cross connection grinding, two sides of twogriding wheels are ground in the same time but in pre-machining notice its concentricity and right angle on griding part.


#### 9.3.6 Multi-size workpiece

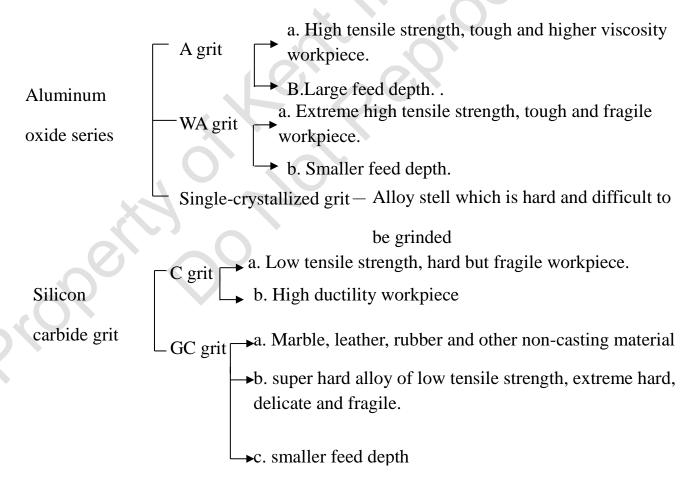
There are more than two different diameters on grinding aprt. The concentricityofworkpiece before machining should be considered at this point. Grinding wheel must be teh same shape as the workpiece but for regulating wheel not necessarily the same. Blade may obtain better effect by less contact to rinding part on workpiece owing to grinding resistance. If there are more than three different diameters on grinding part, better limit with two grinding parts. For curve part and void slot not ground, it is difficult for grinding wheel to dress double grinding wheels with spare betwen.

#### 9.3.7 Cone workpiece

The workpiece only with cone not emphasized its concentricity, grinding is made in accordance with the folloing ways.

- When conical angle is small, regulate level scale of regulating wheel as below left figure.
- 2. When cnical angle is large, dress grinding wheel and regulating wheel. Then, send workpiece to the fix position for grinding as below right figure.
- 3. Another type is tapering bar, such as antennas, fishing rod, which is to be ground by automatic tapering grinding device.




# 9.4 Introduction of grinding wheel

Selection of grinding wheel:

Tor desireable grinding process, grindignwehel is selected by ase on workpiece's requirement and machine's grinding feature. The consideration must also include selecting proper roughness degree, binding degree, texture and binding agent.

#### A. Grit

Grits of centerless grinding machine include "A" grit, "WA" grit, single-crystallized grit of aluminum oxide series, as well as "C" grit and "GC" grit of silicon carbide. Herein, workpieces of various grits are explained as fllowing:



As far as steel is concerned, the most tough "A" grit is better for soft steel

workpiece. Hard material, such as hardened steel and special steel, hard and tough "WA" grit is adapted instead of "A" grit. For general cast iron, brass, copper, tin and tungsten materials, "C" grit is applied. "A' grit, however, with high hardness and high selt-generating fucntion, may prevent lip of grit from being buried. "GC" grit which is harder than "C' grit is applied in high compresion state of special cast iron and super hard alloy with heating treatment. As for stainles steel, it is poor of grinding. The hardest single-crystallized grit in aluminum series and it toughness lying between "A' grit and "WA" grit is used to attain good rok efficiency.

#### **B.** Roughness degree

| No of roughness | 10,12,1416,<br>20,24 | 30,36,4654,60 | 70,80,90,100,12<br>0150,180,220 | 240,280,320,400,500<br>,600,700,800 |
|-----------------|----------------------|---------------|---------------------------------|-------------------------------------|
|                 | Coarse               | Medium        | Fine                            | Very fine                           |

Roughness degree is classified as shown as below. .

The sizes of various grits are given below

| Туре      | Coarse | Medium | Fine    | Very fine  |
|-----------|--------|--------|---------|------------|
| Dia. (mm) | 1-3    | 0.4-1  | 0.1-0.4 | 0.024-0.08 |

The roughness degrees which are by centerless grinding process can be

summarized as:

| Process       | Rough | Rougha&   | Rougha& Polishing |          |
|---------------|-------|-----------|-------------------|----------|
|               |       | polishing |                   |          |
| Roughness no. | 46    | 60        | 80                | 120, 180 |

Gernally speaking, for better efficiency, high ductility workpiece is applied by tough grinding wheel to improve its grinding surface. Fine grinding wheel is usually adopted for hard machining and delicate materials.

#### C. Binding agent

Binding agent includes Vitrified(V), Silicate(S), Rubber(R), Resinous(B), Shellac(E) and metal (M). Vitrified is the hardest and strong binding agent, only very few amount would obtain would obtain high hole rate to required bindng degree with very few clogs on grinding wheel. The bound wheel is very sharp and has high strength. Hence, it takes the most part in grinding work. Vitrifed grinding wheel is used in most centerless grinding machine. When finishing or accuracy isrequried, shellae or rubber binding grinding wheel are applied. Regulating wheels almost are ubbersbinding grinding.

#### **D. Binding degree**

Binding degree represents strength of binding agent. The following is its classification:

| Binding<br>degree | E、F、G     | Н∙І∙Ј∘К | L、M、N、O | $P \cdot Q \cdot R \cdot S$ | $\begin{array}{c} \mathbf{T} \cdot \mathbf{U} \cdot \mathbf{V} \cdot \mathbf{W} \\ \mathbf{X} \cdot \mathbf{Y} \cdot \mathbf{Z} \end{array}$ |
|-------------------|-----------|---------|---------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Strength          | Very soft | Soft    | Medium  | Hard                        | Very hard                                                                                                                                    |

Grinding wheel has the degrees of K, L, M while regulating wheel has degreesof Q. In all times, hard binding degree is applied to soft workpiece, however, and soft binding is applied to hard workpieces. Besides, brass and copper based soft workpiece adopt hard binding degree to prevent hole from being clogged.

#### E. Texture

The density of grinding wheel in unit volum is called texture. There are three stages in JIS: rough, medium and dense. The function of texture is to discharge chips. Its effect has close relation with binding degree. The following items are the rules for selecting texture:

1. The hardness and toughness of workpiece.

Tough texture applies to soft workpiece and dense texture applies to hard and brittle workpiece.

Finishing degree and grinding volume
 Large grinding volume with rough grinding degree is applied by rough texture. Precision grinding is employed by dense texture.

The above mentioned items are the general rules for selecting grinding wheel. Before griding, the codition of workpiece and the status of girnding machine must be fully considered in order to attain desirable results.

## 9.5 Grinding wheel circumferential speed

The higher circumferential speed of griding wheel is reached, the better grinding efficiency and finishing surface is obtained. But grinding wheel circumferential speed is limited by the strength of binding agent. Generally speaking,centerless grinding machine circumferential speed is around 1800m / min. When the speed of vitrified binding grinding wheel is 1800m / min, 16kg / cm2 of centrifugal tension is then generated. Gridnign wheel of roughnessdegree of no. 46 and binding degree of K whose circumferential speed would decelerate becuase diameter reduced due to abrasion. Once and new grinding wheel circumferential speed is determined, it's not necessary to make any correction until its speed declined by abrasion. When select grinding wheels, please refer to the table shown in next page for correct type.

|           |                                                                                        | Grinding material                                                                                                                                                        | Hardness of material                                        | Recommended types          |
|-----------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------|
| on carbon | General structure rolled steel (SS)<br>Mechanical struture carbon steel (SC)<br>(S-CK) | <hrc25< td=""><td>A 60M<br/>38A 60L</td></hrc25<>                                                                                                                        | A 60M<br>38A 60L                                            |                            |
|           | Common                                                                                 | Structure carbon steel iron pipeSTK)<br>Carbon steel wrough work (SF)<br>Carbon steel cast work (SC)                                                                     | >HRC25                                                      | WA 60L                     |
|           | oy steel                                                                               | Nickel chromium alloy steel (SNC)<br>Nickel chromium molybdenum alloy<br>steel (SNCM)<br>Chromium alloy steel (SCM)<br>Aluminum chromium molybdenumalloy<br>steel (SACM) | <hrc55< td=""><td>WA 60L</td></hrc55<>                      | WA 60L                     |
| Steel     | Alloy                                                                                  | High carbon chromium bearing steel<br>(SUT)<br>Structure alloy steel cast work (SCA)<br>Carbon tool steel (SK)                                                           | >HRC55                                                      | WA 60K(L)                  |
|           | Tool steel                                                                             | High speed tool steel (SKH)                                                                                                                                              | <hrc60< td=""><td>WA 60K(L) GC60L<br/>32A 60L</td></hrc60<> | WA 60K(L) GC60L<br>32A 60L |
|           | Tool                                                                                   | Alloy tool steel (SKS , SKD)<br>(SKT)                                                                                                                                    | >HRC60                                                      | WA 60K GC60L<br>32A 60L    |
|           | s steel                                                                                | Stainless steel 1~4 (SUS1~4)<br>Heat resisting steel 1~3 (SEH1~3)                                                                                                        |                                                             | WA 60K(L) GC60L<br>32A 60L |
|           | Stainless                                                                              | Stainless steeel5~16 (SUS5~16)<br>Heat resisting steel 4~5 (SEH4~5)                                                                                                      |                                                             | WA 54L GC60L<br>32A 60L    |
| u Ou      | K                                                                                      | Common cast iron (black heart cast iron FC)                                                                                                                              |                                                             | C 60L                      |
| Cast iron |                                                                                        | Special cast iron                                                                                                                                                        |                                                             | GC 60K                     |
| Cas       |                                                                                        | Black heart eldable iron (FCMB)                                                                                                                                          |                                                             | A 60M                      |
|           |                                                                                        | White heart weldable iron (FCMW)                                                                                                                                         |                                                             |                            |
|           |                                                                                        | Brass (BS)                                                                                                                                                               |                                                             | C 46K                      |

# Selection of grinding wheel

|          | Bronze (BC)                               | A 60M                      |
|----------|-------------------------------------------|----------------------------|
| Non iron | Material for permanent magnet cast magnet | WA 60K<br>C 60L<br>CGC 60L |

of Not Reproduce

# **9.6** Grinding difficulty and solution

There are various phenomeons and difficulties occured in centerless grinding work, the following table show their reasons and solution. In fact, a problem resulte from many reasons and come with serverlsolutoins in which each otehr has relativity. Hence, the folloingseasure is notthe only way to settle problem.

| Phenomenon/fault                               | Cause                                                                                                                                                                                                        | Solution                                                                                                                                                                                                        |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scar on finishing<br>surface                   | 1.excessuve gardbess of blade<br>2.chips or small blocks adhered<br>on blade                                                                                                                                 | 1.replace with a soft blade<br>2.add soluble cutting coolant<br>incooling water                                                                                                                                 |
| Come with equal<br>space of screwlike<br>trace | <ol> <li>hit the edge of grinding wheel</li> <li>undesireable regulation of guide<br/>plate</li> <li>high dressing speed</li> <li>diamond tool worn &amp; torn</li> <li>diamond tool holder loose</li> </ol> | <ul> <li>1.form the edge as cone shape of grinding wheel</li> <li>2.make guide plate pareallel</li> <li>3.reduce dressing speed and feeding volume</li> <li>4.change contact surface of diamond tool</li> </ul> |
| Equal or unequal space of thin line            | 1.poor dressing<br>2.external vibration                                                                                                                                                                      | <ol> <li>1. dressing from edge of<br/>grindingwheel, keep fixed<br/>dressing speed</li> <li>2.isolation of vibration</li> </ol>                                                                                 |
| Deep and dirregular<br>trace                   | 1. grinding wheel loose                                                                                                                                                                                      | 1.insert packing piece between<br>flange and grinding wheel and<br>lock the m well.                                                                                                                             |

|                            |                                                                                                                                                                                                                                                                                                                                             | 1. Reduce center height.                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | 1. Center is too high.                                                                                                                                                                                                                                                                                                                      | 2. Reduce angle.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            | 2. The angle of blade is too large.                                                                                                                                                                                                                                                                                                         | 3. Increase thickness.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                            | 3. The blade is too thin.                                                                                                                                                                                                                                                                                                                   | 4. Relock screw.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            | 4. The blade isn't equipped well.                                                                                                                                                                                                                                                                                                           | 5. Correct blade.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                            | 5. The blade is benting.                                                                                                                                                                                                                                                                                                                    | 6. Reduce grinding volume and                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                            | 6. Large volume.                                                                                                                                                                                                                                                                                                                            | gain grinding times.                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            | 7.Undesirableselecton of grinding                                                                                                                                                                                                                                                                                                           | 7. Consult with grinding wheel                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Self-excited               | wheel.                                                                                                                                                                                                                                                                                                                                      | manufacturer.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| vibration                  | 8.Undesireable real circle of                                                                                                                                                                                                                                                                                                               | 8. Dressing before get balanced,                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            | grinding wheel.                                                                                                                                                                                                                                                                                                                             | screws locked equally.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                            | 9. Grinding wheel support is                                                                                                                                                                                                                                                                                                                | 9. Relock screws.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                            | loose.                                                                                                                                                                                                                                                                                                                                      | 10. Regulate the mandrel of                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                            | 10. Mandrel is loose.                                                                                                                                                                                                                                                                                                                       | regulating wheel.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                            | 11. Diamond tool holder is losse.                                                                                                                                                                                                                                                                                                           | 11. Relock holder and change                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                            | 12. External vibration.                                                                                                                                                                                                                                                                                                                     | diamond tool.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                            |                                                                                                                                                                                                                                                                                                                                             | 12. Isolate external vibration.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                            |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                            |                                                                                                                                                                                                                                                                                                                                             | 1. Increase center height.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                            | 1. Center is too low                                                                                                                                                                                                                                                                                                                        | 1. Increase center height.<br>2. Increast angle.                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            | <ol> <li>Center is too low.</li> <li>Blade angle is too small.</li> </ol>                                                                                                                                                                                                                                                                   | 2.Increast angle.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                            | 2. Blade angle is too small.                                                                                                                                                                                                                                                                                                                | <ul><li>2.Increast angle.</li><li>3. Increase thrust speed.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                           |
|                            |                                                                                                                                                                                                                                                                                                                                             | <ol> <li>2.Increast angle.</li> <li>3. Increase thrust speed.</li> <li>4. Use sharp diamond tool to</li> </ol>                                                                                                                                                                                                                                                                                                                                                  |
|                            | <ol> <li>Blade angle is too small.</li> <li>Excessive hardness of grinding wheel.</li> </ol>                                                                                                                                                                                                                                                | <ul><li>2.Increast angle.</li><li>3. Increase thrust speed.</li><li>4. Use sharp diamond tool to increase corecting speed.</li></ul>                                                                                                                                                                                                                                                                                                                            |
| Fail to get real           | <ol> <li>Blade angle is too small.</li> <li>Excessive hardness of grinding wheel.</li> <li>Large pressure of grinding.</li> </ol>                                                                                                                                                                                                           | <ol> <li>2.Increast angle.</li> <li>3. Increase thrust speed.</li> <li>4. Use sharp diamond tool to<br/>increase corecting speed.</li> <li>5. Reduce feeding volume and</li> </ol>                                                                                                                                                                                                                                                                              |
| Fail to get real<br>circle | <ol> <li>Blade angle is too small.</li> <li>Excessive hardness of grinding wheel.</li> <li>Large pressure of grinding.</li> <li>Large volume of rough</li> </ol>                                                                                                                                                                            | <ul> <li>2.Increast angle.</li> <li>3. Increase thrust speed.</li> <li>4. Use sharp diamond tool to increase corecting speed.</li> <li>5. Reduce feeding volume and dothe first griding by high thrus</li> </ul>                                                                                                                                                                                                                                                |
|                            | <ol> <li>Blade angle is too small.</li> <li>Excessive hardness of grinding wheel.</li> <li>Large pressure of grinding.</li> <li>Large volume of rough grinding.</li> </ol>                                                                                                                                                                  | <ul> <li>2.Increast angle.</li> <li>3. Increase thrust speed.</li> <li>4. Use sharp diamond tool to increase corecting speed.</li> <li>5. Reduce feeding volume and dothe first griding by high thrus speed.</li> </ul>                                                                                                                                                                                                                                         |
|                            | <ol> <li>Blade angle is too small.</li> <li>Excessive hardness of grinding<br/>wheel.</li> <li>Large pressure of grinding.</li> <li>Large volume of rough<br/>grinding.</li> <li>Regulating wheel is loose.</li> </ol>                                                                                                                      | <ol> <li>2.Increast angle.</li> <li>3. Increase thrust speed.</li> <li>4. Use sharp diamond tool to<br/>increase corecting speed.</li> <li>5. Reduce feeding volume and<br/>dothe first griding by high thrus<br/>speed.</li> <li>6. Relock screw and regulating</li> </ol>                                                                                                                                                                                     |
|                            | <ol> <li>Blade angle is too small.</li> <li>Excessive hardness of grinding wheel.</li> <li>Large pressure of grinding.</li> <li>Large volume of rough grinding.</li> <li>Regulating wheel is loose.</li> <li>Coolant is not enough. (in</li> </ol>                                                                                          | <ol> <li>2.Increast angle.</li> <li>3. Increase thrust speed.</li> <li>4. Use sharp diamond tool to<br/>increase corecting speed.</li> <li>5. Reduce feeding volume and<br/>dothe first griding by high thrus<br/>speed.</li> <li>6. Relock screw and regulating<br/>wheel mandrel.</li> </ol>                                                                                                                                                                  |
|                            | <ol> <li>Blade angle is too small.</li> <li>Excessive hardness of grinding wheel.</li> <li>Large pressure of grinding.</li> <li>Large volume of rough grinding.</li> <li>Regulating wheel is loose.</li> <li>Coolant is not enough. (in grinding hollow piece)</li> </ol>                                                                   | <ol> <li>2.Increast angle.</li> <li>3. Increase thrust speed.</li> <li>4. Use sharp diamond tool to<br/>increase corecting speed.</li> <li>5. Reduce feeding volume and<br/>dothe first griding by high thrus<br/>speed.</li> <li>6. Relock screw and regulating<br/>wheel mandrel.</li> <li>7. Add coolant on desireable</li> </ol>                                                                                                                            |
|                            | <ol> <li>Blade angle is too small.</li> <li>Excessive hardness of grinding wheel.</li> <li>Large pressure of grinding.</li> <li>Large volume of rough grinding.</li> <li>Regulating wheel is loose.</li> <li>Coolant is not enough. (in</li> </ol>                                                                                          | <ol> <li>2.Increast angle.</li> <li>3. Increase thrust speed.</li> <li>4. Use sharp diamond tool to<br/>increase corecting speed.</li> <li>5. Reduce feeding volume and<br/>dothe first griding by high thrust<br/>speed.</li> <li>6. Relock screw and regulating<br/>wheel mandrel.</li> </ol>                                                                                                                                                                 |
|                            | <ol> <li>Blade angle is too small.</li> <li>Excessive hardness of grinding wheel.</li> <li>Large pressure of grinding.</li> <li>Large volume of rough grinding.</li> <li>Regulating wheel is loose.</li> <li>Coolant is not enough. (in grinding hollow piece)</li> </ol>                                                                   | <ol> <li>2.Increast angle.</li> <li>3. Increase thrust speed.</li> <li>4. Use sharp diamond tool to<br/>increase corecting speed.</li> <li>5. Reduce feeding volume and<br/>dothe first griding by high thrus<br/>speed.</li> <li>6. Relock screw and regulating<br/>wheel mandrel.</li> <li>7. Add coolant on desireable<br/>place of contact point.</li> <li>8. Dressing again.</li> </ol>                                                                    |
|                            | <ol> <li>Blade angle is too small.</li> <li>Excessive hardness of grinding wheel.</li> <li>Large pressure of grinding.</li> <li>Large volume of rough grinding.</li> <li>Regulating wheel is loose.</li> <li>Coolant is not enough. (in grinding hollow piece)</li> </ol>                                                                   | <ol> <li>2.Increast angle.</li> <li>3. Increase thrust speed.</li> <li>4. Use sharp diamond tool to<br/>increase corecting speed.</li> <li>5. Reduce feeding volume and<br/>dothe first griding by high thrus<br/>speed.</li> <li>6. Relock screw and regulating<br/>wheel mandrel.</li> <li>7. Add coolant on desireable<br/>place of contact point.</li> </ol>                                                                                                |
| circle                     | <ol> <li>Blade angle is too small.</li> <li>Excessive hardness of grinding<br/>wheel.</li> <li>Large pressure of grinding.</li> <li>Large volume of rough<br/>grinding.</li> <li>Regulating wheel is loose.</li> <li>Coolant is not enough. (in<br/>grinding hollow piece)</li> <li>Undesirable dressing.</li> </ol>                        | <ol> <li>Increast angle.</li> <li>Increase thrust speed.</li> <li>Use sharp diamond tool to<br/>increase corecting speed.</li> <li>Reduce feeding volume and<br/>dothe first griding by high thrus<br/>speed.</li> <li>Relock screw and regulating<br/>wheel mandrel.</li> <li>Add coolant on desireable<br/>place of contact point.</li> <li>Dressing again.</li> <li>Make quide plate parallel.</li> <li>Reduce tilt angle of</li> </ol>                      |
|                            | <ol> <li>Blade angle is too small.</li> <li>Excessive hardness of grinding wheel.</li> <li>Large pressure of grinding.</li> <li>Large volume of rough grinding.</li> <li>Regulating wheel is loose.</li> <li>Coolant is not enough. (in grinding hollow piece)</li> </ol>                                                                   | <ol> <li>Increast angle.</li> <li>Increase thrust speed.</li> <li>Use sharp diamond tool to<br/>increase corecting speed.</li> <li>Reduce feeding volume and<br/>dothe first griding by high thrus<br/>speed.</li> <li>Relock screw and regulating<br/>wheel mandrel.</li> <li>Add coolant on desireable<br/>place of contact point.</li> <li>Dressing again.</li> <li>Make quide plate parallel.</li> <li>Reduce tilt angle of</li> </ol>                      |
| circle                     | <ol> <li>Blade angle is too small.</li> <li>Excessive hardness of grinding wheel.</li> <li>Large pressure of grinding.</li> <li>Large volume of rough grinding.</li> <li>Regulating wheel is loose.</li> <li>Coolant is not enough. (in grinding hollow piece)</li> <li>Undesirable dressing.</li> </ol> 1. Undesirable regulation of guide | <ol> <li>Increast angle.</li> <li>Increase thrust speed.</li> <li>Use sharp diamond tool to<br/>increase corecting speed.</li> <li>Reduce feeding volume and<br/>dothe first griding by high thrust<br/>speed.</li> <li>Relock screw and regulating<br/>wheel mandrel.</li> <li>Add coolant on desireable<br/>place of contact point.</li> <li>Dressing again.</li> <li>Make quide plate parallel.</li> <li>Reduce tilt angle of<br/>regulatigwheel.</li> </ol> |

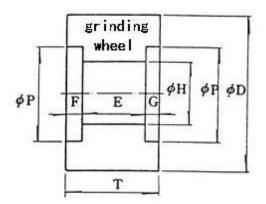
| Low contral part                 | 1. Undesirable regulation of guideplate.                                                                                                                      | <ol> <li>Make guide plate parellel.</li> <li>Increase tilt angle of<br/>grindingwheel.</li> <li>Reduce swivel angle of<br/>regulaitng wheel on dressing<br/>device .</li> </ol> |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fail to get real<br>straightness | <ol> <li>More deformation before<br/>grinding.</li> <li>Excessive griding volume in<br/>the first grinding.</li> <li>Insufficient grinding volume.</li> </ol> |                                                                                                                                                                                 |
|                                  |                                                                                                                                                               | JS CO                                                                                                                                                                           |
|                                  |                                                                                                                                                               |                                                                                                                                                                                 |

# 9.7 Spare parts

► KCG-12S

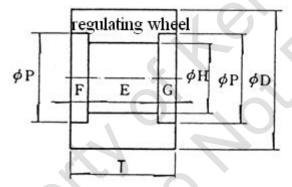
| ser            | ies                          |                |                         |      |        |
|----------------|------------------------------|----------------|-------------------------|------|--------|
|                | LOCATION                     | NAME           | SPECIFICATI<br>ON       | Q'TY | REMARK |
|                |                              | Oil seal       | $TC45 \cdot 62 \cdot 9$ | 1    | S      |
|                | End cover alloy bearing seat | O ring         | G35                     | 1    |        |
|                | bearing seat                 | O ring         | G55                     | 1    |        |
| heel           | Spindle front cover          | Oil seal       | TC75、95、                | 1    |        |
| Grinding wheel | Spindle front cover          | O ring         | G65                     | 2    |        |
| indin          | Creindle neen eeuedn         | Oil seal       | TC60、75、9               | 1    | 2      |
| Gri            | Spindle rear covedr          | O ring         | G50                     | 2    |        |
|                | Center rest                  | Thrust bearing | 51111                   | 2    |        |
|                | Oil lens                     | O ring         | G45                     | 1    |        |
|                |                              | Oil seal       | TC45 、 62 、 9           | 1    |        |
|                | End cover alloy bearing seat | O ring         | G35                     | 2    |        |
|                | bearing seat                 | O ring         | G55                     | 1    |        |
|                |                              | Oil seal       | TC70 • 88 •             | 1    |        |
| eel            | Front bearing external nut   | O ring         | G60                     | 2    |        |
| ulating wheel  | external nut                 | O ring         | G95                     | 1    |        |
| ating          | Rear bearing                 | O ring         | G85                     | 1    |        |
| Regul          | external nut                 | O ring         | G95                     | 1    |        |
| Re             | Thrust bearing seat          | Thrust bearing | 51107                   | 2    |        |
|                | Rear cover                   | Oil seal       | TC40、50、8               | 1    |        |
| Ť              | Kear cover                   | O ring         | G85                     | 1    |        |
|                | Oil lens                     | O ring         | G45                     | 1    |        |

| Regulating wheel<br>feed mechanism | Feed beawring seat                | Thrust bearing                     | 51106 | 2 |   |
|------------------------------------|-----------------------------------|------------------------------------|-------|---|---|
|                                    | Feed bearing seat                 | Thrust bearing                     | 51107 | 2 | S |
| Worktable feed<br>mechanism        | Miero adjust food                 | Ball screw<br>bearing              | 6006Z | 1 | 5 |
| Workta                             | Micro adjust feed<br>bearing seat | Automatic<br>alignment<br>bearings | 1206  | 1 |   |
|                                    |                                   | O ring                             | P45   | 2 | 2 |
| Dressing cylinder                  | Cylinder cover                    | O ring                             | P14   | 2 |   |
| Dres<br>cyli                       | Piston                            | O ring                             | P32   | 2 |   |
|                                    | Filter                            | O ring                             | 4033  | 1 |   |
| _                                  |                                   | O ring                             | P105  | 1 |   |
| 'stem                              | X                                 | Filter net                         | 1/2"  | 1 |   |
| ly sy                              | Oil tank                          | Filter net                         | 3/4"  | 1 |   |
| Oil supply sy                      | X                                 | O ring                             | P21   | 1 |   |
| lio                                | Hydraulic<br>pressureswitch valve | O ring                             | P10A  | 1 |   |


-

#### ➢ KCG-18S、18AS、18BS、20S

| series           |                               |                |                  |      |        |  |
|------------------|-------------------------------|----------------|------------------|------|--------|--|
|                  | LOCATION                      | NAME           | SPECIFICATION    | Q'TY | REMARK |  |
|                  |                               | Oil seal       | TC65 、 95 、 14   | 1    |        |  |
|                  | End cover alloy               | O ring         | G55              | 2    |        |  |
|                  | bearing seat                  | O ring         | G80              | 1    |        |  |
| heel             | Sain die front ooron          | Oil seal       | TC105 \ 135 \ 14 | 1    | 5      |  |
| Grinding wheel   | Spindle front cover           | O ring         | G95              | 2    |        |  |
| ndin             | Secie dia managemen           | Oil seal       | TC80 、105 、13    | 1    |        |  |
| Gri              | Spindle rear cover            | O ring         | G70              | 2    |        |  |
|                  | Center rest                   | Thrust         | 51117            | 2    |        |  |
|                  | Center rest                   | bearing        | 51117            | 2    | 2,     |  |
|                  | Oil lens                      | O ring         | G45              | 1    |        |  |
|                  | End cover alloy beawring seat | Oil seal       | TC50 • 72 • 12   | 1    |        |  |
|                  |                               | O ring         | G40              | 2    |        |  |
|                  |                               | O ring         | G65              | 1    |        |  |
|                  | Encode based on a             | Oil seal       | TC85 • 110 • 13  | 1    |        |  |
| [i               | Front bearing external nut    | O ring         | G120             | 1    |        |  |
| whee             | external nut                  | O ring         | G75              | 2    |        |  |
| ing v            | Smindle reen cover            | Oil seal       | TC50、62、7        | 1    |        |  |
| Regulating wheel | Spindle rear cover            | O ring         | G115             | 1    |        |  |
| Re£              | Rear bearing<br>external nut  | O ring         | G115             | 2    |        |  |
|                  | Thrust bearing seat           | Thrust bearing | 51109            | 2    |        |  |
|                  | Oillong                       | O ring         | G80              | 1    |        |  |
|                  | Oil lens                      | O ring         |                  | 1    |        |  |


| Regulating wheel spindle<br>mechanism | Feed bearing seat          | Thrust<br>bearing | 51106 | 2 | SA |
|---------------------------------------|----------------------------|-------------------|-------|---|----|
|                                       | Micro feed bearing<br>seat | Thrust<br>bearing | 51106 | 2 |    |
| g machnism                            | Feed bearing seat          | Thrust<br>bearing | 51109 | 2 | 2  |
| Worktable feeding machnism            | Micro feed bearing<br>seat | Thrust<br>bearing | 51107 | 2 |    |
| inde                                  |                            | O ring            | P65A  | 2 |    |
| Dressing cylinde                      | Feed bearing seat          | O ring            | P20   | 2 |    |
| Dressi                                | Piston                     | O ring            | P48A  | 2 |    |
|                                       |                            | O ring            | 4033  | 1 |    |
| stem                                  | Filter can                 | O ring            | P105  | 1 |    |
| y sy                                  |                            | Filter            | 1/2"  | 1 |    |
| lqqu                                  | Oil tank                   | Filter            | 3/4"  | 1 |    |
| Oil supply system                     | Hydraulic switch           | O ring            | P21   | 1 |    |
|                                       | valve                      | O ring            | P10A  | 1 |    |

# 9.8 Size List of Grinding Wheel and Regulating Wheel





|                |                    |     |                  |    | · · · · · · |     |     |
|----------------|--------------------|-----|------------------|----|-------------|-----|-----|
|                | $\phi  \mathrm{D}$ | Т   | $\phi\mathrm{H}$ | F  | G           | Р   | E   |
| KCG-12 series  | 305                | 150 | 120              | 25 | 25          | 175 | 100 |
| KCG-18 series  | 455                | 205 | 228.6            | 25 | 25          | 295 | 155 |
| KCG-18A series | 455                | 255 | 228.6            | 50 | 50          | 295 | 155 |
| KCG-18B series | 455                | 305 | 228.6            | 50 | 50          | 295 | 205 |
| KCG-20 series  | 510                | 205 | 254              | 25 | 25          | 320 | 155 |



unit : MM

|  | 0              | $\phi$ D | Т   | $\phi\mathrm{H}$ | F   | G  | Р   | Е   |
|--|----------------|----------|-----|------------------|-----|----|-----|-----|
|  | KCG-12 series  | 205      | 150 | 90               | 25  | 25 | 130 | 100 |
|  | KCG-18 series  | 255      | 205 | 111.2            | 75  | 20 | 170 | 110 |
|  | KCG-18A series | 255      | 255 | 111.2            | 100 | 45 | 170 | 110 |
|  | KCG-18B series | 255      | 305 | 111.2            | 100 | 65 | 170 | 140 |
|  | KCG-20 series  | 305      | 205 | 127              | 75  | 20 | 190 | 110 |